메뉴 건너뛰기




Volumn 11, Issue 4, 2017, Pages 423-430

Assessment of PD severity in gas-insulated switchgear with an SSAE

Author keywords

[No Author keywords available]

Indexed keywords

DEEP LEARNING; DEEP NEURAL NETWORKS; PARTIAL DISCHARGES;

EID: 85021412201     PISSN: 17518822     EISSN: None     Source Type: Journal    
DOI: 10.1049/iet-smt.2016.0326     Document Type: Article
Times cited : (38)

References (24)
  • 1
    • 84865161503 scopus 로고    scopus 로고
    • 'Partial discharge recognition based on SF[sub]6[/sub] decomposition products and support vector machine'
    • Tang, J., Liu, F., Zhang, X. et al.: 'Partial discharge recognition based on SF[sub]6[/sub] decomposition products and support vector machine', IET Sci. Meas. Technol., 2012, 6, (4), pp. 198-204
    • (2012) IET Sci. Meas. Technol , vol.6 , Issue.4 , pp. 198-204
    • Tang, J.1    Liu, F.2    Zhang, X.3
  • 4
    • 84880384762 scopus 로고    scopus 로고
    • 'Partial discharge identification system for high voltage power transformers using fractal feature based extension method'
    • Chen, H.C.,: 'Partial discharge identification system for high voltage power transformers using fractal feature based extension method', IET Sci. Meas. Technol., 2013, 7, (2), pp. 77-84
    • (2013) IET Sci. Meas. Technol , vol.7 , Issue.2 , pp. 77-84
    • Chen, H.C.1
  • 5
    • 45849152625 scopus 로고    scopus 로고
    • 'Detection of harmful metallic particles inside gas insulated switchgear using UHF sensor'
    • Okabe, S., Yamagiwa, T., Okubo, H.,: 'Detection of harmful metallic particles inside gas insulated switchgear using UHF sensor', IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (3), pp. 701-709
    • (2008) IEEE Trans. Dielectr. Electr. Insul , vol.15 , Issue.3 , pp. 701-709
    • Okabe, S.1    Yamagiwa, T.2    Okubo, H.3
  • 6
    • 84897692820 scopus 로고    scopus 로고
    • 'Partial discharges in SF[sub]6[/sub] gas filled void under standard oscillating lightning and switching impulses in uniform and non-uniform background fields'
    • Ren, M., Dong, M., Liu, Y. et al.: 'Partial discharges in SF[sub]6[/sub] gas filled void under standard oscillating lightning and switching impulses in uniform and non-uniform background fields', IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (1), pp. 38-148
    • (2014) IEEE Trans. Dielectr. Electr. Insul , vol.21 , Issue.1 , pp. 38-148
    • Ren, M.1    Dong, M.2    Liu, Y.3
  • 7
    • 84898687493 scopus 로고    scopus 로고
    • 'Partial discharge initiated by free moving metallic particles on GIS insulator surface: severity diagnosis and assessment'
    • Qi, B., Li, C., Xing, Z. et al.: 'Partial discharge initiated by free moving metallic particles on GIS insulator surface: severity diagnosis and assessment', IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 766-774
    • (2014) IEEE Trans. Dielectr. Electr. Insul , vol.21 , Issue.2 , pp. 766-774
    • Qi, B.1    Li, C.2    Xing, Z.3
  • 8
    • 77249099834 scopus 로고    scopus 로고
    • 'Partial discharge detection as a tool to infer pollution severity of polymeric insulators'
    • Chandrasekar, S., Kalaivanan, C., Montanari, G.C. et al.: 'Partial discharge detection as a tool to infer pollution severity of polymeric insulators', IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (1), pp. 181-188
    • (2010) IEEE Trans. Dielectr. Electr. Insul , vol.17 , Issue.1 , pp. 181-188
    • Chandrasekar, S.1    Kalaivanan, C.2    Montanari, G.C.3
  • 9
    • 33746600649 scopus 로고    scopus 로고
    • 'Reducing the dimensionality of data with neural networks'
    • Hinton, G.E., Salakhutdinov, R.R.,: 'Reducing the dimensionality of data with neural networks', Science, 2006, 313, (5786), pp. 504-507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 11
    • 84876231242 scopus 로고    scopus 로고
    • 'ImageNet classification with deep convolutional neural networks'
    • Krizhevsky, A., Sutskever, I., Hinton, G.E.,: 'ImageNet classification with deep convolutional neural networks', Adv. Neural Inf. Process. Syst., 2012, 25, (2), pp. 1090-1098
    • (2012) Adv. Neural Inf. Process. Syst , vol.25 , Issue.2 , pp. 1090-1098
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 12
    • 84890491198 scopus 로고    scopus 로고
    • 'Recent advances in deep learning for speech research at Microsoft'
    • Deng, L., Li, J., Huang, J.T. et al.: 'Recent advances in deep learning for speech research at Microsoft'. 2013, pp. 8604-8608
    • (2013) , pp. 8604-8608
    • Deng, L.1    Li, J.2    Huang, J.T.3
  • 13
    • 84919830285 scopus 로고    scopus 로고
    • 'Combining Newton interpolation and deep learning for image classification'
    • Zhang, Y., Shang, C.,: 'Combining Newton interpolation and deep learning for image classification', Electron. Lett., 2015, 51, (1), pp. 40-42
    • (2015) Electron. Lett , vol.51 , Issue.1 , pp. 40-42
    • Zhang, Y.1    Shang, C.2
  • 14
    • 85032751458 scopus 로고    scopus 로고
    • 'Deep neural networks for acoustic modeling in speech recognition'
    • Hinton, G.E., Deng, L., Yu, D. et al.:'Deep neural networks for acoustic modeling in speech recognition', IEEE Signal Process. Mag., 2012, 29, (6), pp. 82-97
    • (2012) IEEE Signal Process. Mag , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.E.1    Deng, L.2    Yu, D.3
  • 15
    • 84888870402 scopus 로고    scopus 로고
    • 'Intelligent condition based monitoring of rotating machines using sparse auto-encoders'
    • Gaithersburg, MD, USA, June
    • Verma, N.K., Gupta, V.K., Sharma, M. et al.: 'Intelligent condition based monitoring of rotating machines using sparse auto-encoders'. IEEE Conf. Prognostics and Health Management, Gaithersburg, MD, USA, June 2013, pp. 1-7
    • (2013) IEEE Conf. Prognostics and Health Management , pp. 1-7
    • Verma, N.K.1    Gupta, V.K.2    Sharma, M.3
  • 16
    • 33847740251 scopus 로고    scopus 로고
    • 'Study on mathematical model for VHF partial discharge of typical insulated defects in GIS'
    • Tang, J., Zhou, Q., Tang, M. et al.: 'Study on mathematical model for VHF partial discharge of typical insulated defects in GIS', IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (1), pp. 30-38
    • (2007) IEEE Trans. Dielectr. Electr. Insul , vol.14 , Issue.1 , pp. 30-38
    • Tang, J.1    Zhou, Q.2    Tang, M.3
  • 17
    • 84924267124 scopus 로고    scopus 로고
    • 'Features extraction and mechanism analysis of partial discharge development under protrusion defect'
    • Dong, Y.L., Tang, J., Zeng, F.P. et al.: 'Features extraction and mechanism analysis of partial discharge development under protrusion defect', J. Electr. Eng. Technol., 2015, 10, (1), pp. 344-354
    • (2015) J. Electr. Eng. Technol , vol.10 , Issue.1 , pp. 344-354
    • Dong, Y.L.1    Tang, J.2    Zeng, F.P.3
  • 18
    • 80054062397 scopus 로고    scopus 로고
    • 'Severity diagnosis and assessment of the partial discharge provoked by high-voltage electrode protrusion on GIS insulator surface'
    • Qi, B., Li, C.R., Geng, B.B. et al.:'Severity diagnosis and assessment of the partial discharge provoked by high-voltage electrode protrusion on GIS insulator surface', IEEE Trans. Power Deliv., 2011, 26, (4), pp. 2363-2369
    • (2011) IEEE Trans. Power Deliv , vol.26 , Issue.4 , pp. 2363-2369
    • Qi, B.1    Li, C.R.2    Geng, B.B.3
  • 19
    • 84930630277 scopus 로고    scopus 로고
    • 'Deep learning'
    • Lecun, Y., Bengio, Y., Hinton, G.,: 'Deep learning', Nature, 2015, 521, (7553), pp. 436-444
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 20
    • 84868364183 scopus 로고    scopus 로고
    • 'Autoencoders, unsupervised learning, and deep architectures editor: I'
    • Baldi, P., Guyon, G., Dror, V. et al.: 'Autoencoders, unsupervised learning, and deep architectures editor: I', J. Mach. Learn. Res., 2012, 27, pp. 37-50
    • (2012) J. Mach. Learn. Res , vol.27 , pp. 37-50
    • Baldi, P.1    Guyon, G.2    Dror, V.3
  • 21
    • 77949522811 scopus 로고    scopus 로고
    • 'Why does unsupervised pre-training help deep learning?'
    • Erhan, D., Bengio, Y., Courville, A. et al.: 'Why does unsupervised pre-training help deep learning?', J. Mach. Learn. Res., 2010, 11, (3), pp. 625-660
    • (2010) J. Mach. Learn. Res , vol.11 , Issue.3 , pp. 625-660
    • Erhan, D.1    Bengio, Y.2    Courville, A.3
  • 22
    • 84871558799 scopus 로고    scopus 로고
    • 'SA-SVM incremental algorithm for GIS PD pattern recognition'
    • Wang, D.B., Tang, J., Zhuo, R. et al.: 'SA-SVM incremental algorithm for GIS PD pattern recognition', J. Electr. Eng. Technol., 2012, 11, (1), pp. 388-391
    • (2012) J. Electr. Eng. Technol , vol.11 , Issue.1 , pp. 388-391
    • Wang, D.B.1    Tang, J.2    Zhuo, R.3
  • 23
    • 85007196088 scopus 로고    scopus 로고
    • 'Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks'
    • Arizona, USA, February
    • Li, C., Chen, C., Carlson, D. et al.: 'Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks', AAAI Conf. Artif. Intell., Arizona, USA, February, 2015, pp. 1-7
    • (2015) AAAI Conf. Artif. Intell , pp. 1-7
    • Li, C.1    Chen, C.2    Carlson, D.3
  • 24
    • 79551480483 scopus 로고    scopus 로고
    • 'Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion'
    • Vincent, P., Larochelle, H., Lajoie, I. et al.: 'Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion', J. Mach. Learn. Res., 2010, 11, (12), pp. 3371-3408
    • (2010) J. Mach. Learn. Res , vol.11 , Issue.12 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.