메뉴 건너뛰기




Volumn 68, Issue , 2015, Pages 164-181

Partial discharge classifications: Review of recent progress

Author keywords

Feature extraction; Neural networks; Partial discharge measurement; Pattern recognition

Indexed keywords

DEFECTS; DISCHARGE (FLUID MECHANICS); EXTRACTION; FEATURE EXTRACTION; INSULATION; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 84924974508     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2015.02.032     Document Type: Review
Times cited : (211)

References (103)
  • 1
    • 0036693440 scopus 로고    scopus 로고
    • Comparison of on-line partial discharge detection methods for HV cable joints
    • Y. Tian, P.L. Lewin, and A.E. Davies Comparison of on-line partial discharge detection methods for HV cable joints IEEE Trans. Dielectr. Electr. Insul. 9 2002 604 615
    • (2002) IEEE Trans. Dielectr. Electr. Insul. , vol.9 , pp. 604-615
    • Tian, Y.1    Lewin, P.L.2    Davies, A.E.3
  • 2
    • 0028408133 scopus 로고
    • Artificial neural networks for recognition of 3-d partial discharge patterns
    • L. Satish, and W.S. Zaengl Artificial neural networks for recognition of 3-d partial discharge patterns IEEE Trans. Dielectr. Electr. Insul. 1 1994 265 275
    • (1994) IEEE Trans. Dielectr. Electr. Insul. , vol.1 , pp. 265-275
    • Satish, L.1    Zaengl, W.S.2
  • 3
    • 0033888597 scopus 로고    scopus 로고
    • Analysis of ultrawide-band detected partial discharges by means of a multiresolution digital signal-processing method
    • L. Angrisani, P. Daponte, G. Lupò, C. Petrarca, and M. Vitelli Analysis of ultrawide-band detected partial discharges by means of a multiresolution digital signal-processing method Measurement 27 2000 207 221
    • (2000) Measurement , vol.27 , pp. 207-221
    • Angrisani, L.1    Daponte, P.2    Lupò, G.3    Petrarca, C.4    Vitelli, M.5
  • 4
    • 0000056642 scopus 로고
    • Partial discharge pattern classification using multilayer neural networks
    • L. Satish, and B.I. Gururaj Partial discharge pattern classification using multilayer neural networks Sci., Meas. Technol., IEE Proc. A 140 1993 323 330
    • (1993) Sci., Meas. Technol., IEE Proc. A , vol.140 , pp. 323-330
    • Satish, L.1    Gururaj, B.I.2
  • 5
    • 33748073455 scopus 로고    scopus 로고
    • ART 2 - An unsupervised neural network for PD pattern recognition and classification
    • B. Karthikeyan, S. Gopal, and S. Venkatesh ART 2 - an unsupervised neural network for PD pattern recognition and classification Expert Syst. Appl. 31 2006 345 350
    • (2006) Expert Syst. Appl. , vol.31 , pp. 345-350
    • Karthikeyan, B.1    Gopal, S.2    Venkatesh, S.3
  • 6
    • 33847696897 scopus 로고    scopus 로고
    • A novel wavelet transform technique for on-line partial discharge measurements. 2. On-site noise rejection application
    • Z. Hao, T.R. Blackburn, B.T. Phung, and D. Sen A novel wavelet transform technique for on-line partial discharge measurements. 2. On-site noise rejection application IEEE Trans. Dielectr. Electr. Insul. 14 2007 15 22
    • (2007) IEEE Trans. Dielectr. Electr. Insul. , vol.14 , pp. 15-22
    • Hao, Z.1    Blackburn, T.R.2    Phung, B.T.3    Sen, D.4
  • 7
    • 0036613463 scopus 로고    scopus 로고
    • Interpretation of wavelet analysis and its application in partial discharge detection
    • X. Ma, C. Zhou, and I.J. Kemp Interpretation of wavelet analysis and its application in partial discharge detection IEEE Trans. Dielectr. Electr. Insul. 9 2002 446 457
    • (2002) IEEE Trans. Dielectr. Electr. Insul. , vol.9 , pp. 446-457
    • Ma, X.1    Zhou, C.2    Kemp, I.J.3
  • 8
    • 79955573457 scopus 로고    scopus 로고
    • Robust heteroscedastic probabilistic neural network for multiple source partial discharge pattern recognition - Significance of outliers on classification capability
    • S. Venkatesh, and S. Gopal Robust heteroscedastic probabilistic neural network for multiple source partial discharge pattern recognition - significance of outliers on classification capability Expert Syst. Appl. 38 2011 11501 11514
    • (2011) Expert Syst. Appl. , vol.38 , pp. 11501-11514
    • Venkatesh, S.1    Gopal, S.2
  • 9
    • 37349032308 scopus 로고    scopus 로고
    • Partial discharge pattern classification using composite versions of probabilistic neural network inference engine
    • B. Karthikeyan, S. Gopal, and S. Venkatesh Partial discharge pattern classification using composite versions of probabilistic neural network inference engine Expert Syst. Appl. 34 2008 1938 1947
    • (2008) Expert Syst. Appl. , vol.34 , pp. 1938-1947
    • Karthikeyan, B.1    Gopal, S.2    Venkatesh, S.3
  • 10
    • 84890901510 scopus 로고    scopus 로고
    • Effect of geometrical parameters on high frequency performance of Rogowski coil for partial discharge measurements
    • M. Shafiq, G.A. Hussain, L. Kütt, and M. Lehtonen Effect of geometrical parameters on high frequency performance of Rogowski coil for partial discharge measurements Measurement 49 3 2014 126 137
    • (2014) Measurement , vol.49 , Issue.3 , pp. 126-137
    • Shafiq, M.1    Hussain, G.A.2    Kütt, L.3    Lehtonen, M.4
  • 11
    • 0031070314 scopus 로고    scopus 로고
    • PD source identification with novel discharge parameters using counter propagation neural networks
    • M. Hoof, B. Freisleben, and R. Patsch PD source identification with novel discharge parameters using counter propagation neural networks IEEE Trans. Dielectr. Electr. Insul. 4 1997 17 32
    • (1997) IEEE Trans. Dielectr. Electr. Insul. , vol.4 , pp. 17-32
    • Hoof, M.1    Freisleben, B.2    Patsch, R.3
  • 12
    • 0027882306 scopus 로고
    • PD pattern recognition with neural networks using the multilayer perceptron technique
    • A.A. Mazroua, M.M.A. Salama, and R. Bartnikas PD pattern recognition with neural networks using the multilayer perceptron technique IEEE Trans. Electr. Insul. 28 1993 1082 1089
    • (1993) IEEE Trans. Electr. Insul. , vol.28 , pp. 1082-1089
    • Mazroua, A.A.1    Salama, M.M.A.2    Bartnikas, R.3
  • 14
    • 84877249255 scopus 로고    scopus 로고
    • Pattern recognition techniques and their applications for automatic classification of artificial partial discharge sources
    • M. Hui, J.C. Chan, T.K. Saha, and C. Ekanayake Pattern recognition techniques and their applications for automatic classification of artificial partial discharge sources IEEE Trans. Dielectr. Electr. Insul. 20 2013 468 478
    • (2013) IEEE Trans. Dielectr. Electr. Insul. , vol.20 , pp. 468-478
    • Hui, M.1    Chan, J.C.2    Saha, T.K.3    Ekanayake, C.4
  • 18
    • 84892563226 scopus 로고    scopus 로고
    • Online PD detection on high voltage underground power cables by acoustic emission
    • P. Casals-Torrens, A. González-Parada, and R. Bosch-Tous Online PD detection on high voltage underground power cables by acoustic emission Procedia Eng. 35 2012 22 30
    • (2012) Procedia Eng. , vol.35 , pp. 22-30
    • Casals-Torrens, P.1    González-Parada, A.2    Bosch-Tous, R.3
  • 19
    • 84855419545 scopus 로고    scopus 로고
    • Identification of two simultaneous partial discharge sources in an oil-pressboard insulation system using acoustic emission techniques
    • P. Kundu, N.K. Kishore, and A.K. Sinha Identification of two simultaneous partial discharge sources in an oil-pressboard insulation system using acoustic emission techniques Appl. Acoust. 73 4 2012 395 401
    • (2012) Appl. Acoust. , vol.73 , Issue.4 , pp. 395-401
    • Kundu, P.1    Kishore, N.K.2    Sinha, A.K.3
  • 20
    • 84886727964 scopus 로고    scopus 로고
    • Hybrid regrouping PSO based wavelet neural networks for characterization of acoustic signals due to surface discharges on H.V. Glass insulators
    • N.A. Al-geelani, M.A.M. Piah, Z. Adzis, M.A. Algeelani, and Hybrid regrouping PSO based wavelet neural networks for characterization of acoustic signals due to surface discharges on H.V. glass insulators Appl. Soft Comput. 13 12 2013 4622 4632
    • (2013) Appl. Soft Comput. , vol.13 , Issue.12 , pp. 4622-4632
    • Al-Geelani, N.A.1    Piah, M.A.M.2    Adzis, Z.3    Algeelani, M.A.4
  • 21
    • 84870252386 scopus 로고    scopus 로고
    • Using a new generation of piezoelectric sensors for partial discharge detection
    • B. Danouj, S.A. Tahan, and E. David Using a new generation of piezoelectric sensors for partial discharge detection Measurement 46 2013 660 666
    • (2013) Measurement , vol.46 , pp. 660-666
    • Danouj, B.1    Tahan, S.A.2    David, E.3
  • 22
    • 0036505569 scopus 로고    scopus 로고
    • Automated wavelet selection and thresholding for PD detection
    • X. Ma, C. Zhou, and I.J. Kemp Automated wavelet selection and thresholding for PD detection Electric. Insul. Mag., IEEE 18 2002 37 45
    • (2002) Electric. Insul. Mag., IEEE , vol.18 , pp. 37-45
    • Ma, X.1    Zhou, C.2    Kemp, I.J.3
  • 23
    • 0037732564 scopus 로고    scopus 로고
    • Wavelet-based denoising of partial discharge signals buried in excessive noise and interference
    • L. Satish, and B. Nazneen Wavelet-based denoising of partial discharge signals buried in excessive noise and interference IEEE Trans. Dielectr. Electr. Insul. 10 2003 354 367
    • (2003) IEEE Trans. Dielectr. Electr. Insul. , vol.10 , pp. 354-367
    • Satish, L.1    Nazneen, B.2
  • 24
    • 0027886708 scopus 로고
    • Computer-aided measurement of partial discharges in HV equipment
    • E. Gulski Computer-aided measurement of partial discharges in HV equipment IEEE Trans. Electr. Insul. 28 1993 969 983
    • (1993) IEEE Trans. Electr. Insul. , vol.28 , pp. 969-983
    • Gulski, E.1
  • 25
    • 78649955091 scopus 로고    scopus 로고
    • A method for discriminating original pulses in online partial discharge measurement
    • M. Allahbakhshi, and A. Akbari A method for discriminating original pulses in online partial discharge measurement Measurement 44 2011 148 158
    • (2011) Measurement , vol.44 , pp. 148-158
    • Allahbakhshi, M.1    Akbari, A.2
  • 26
    • 0035078588 scopus 로고    scopus 로고
    • Detection of PD utilizing digital signal processing methods. Part 3: Open-loop noise reduction
    • I. Shim, J.J. Soraghan, and W.H. Siew Detection of PD utilizing digital signal processing methods. Part 3: Open-loop noise reduction Electric. Insul. Mag., IEEE 17 2001 6 13
    • (2001) Electric. Insul. Mag., IEEE , vol.17 , pp. 6-13
    • Shim, I.1    Soraghan, J.J.2    Siew, W.H.3
  • 29
    • 0033742371 scopus 로고    scopus 로고
    • Wavelet transforms in power systems. I. General introduction to the wavelet transforms
    • K. Chul-Hwan, and R. Aggarwal Wavelet transforms in power systems. I. General introduction to the wavelet transforms Power Eng. J. 14 2000 81 87
    • (2000) Power Eng. J. , vol.14 , pp. 81-87
    • Chul-Hwan, K.1    Aggarwal, R.2
  • 30
    • 33644926666 scopus 로고    scopus 로고
    • Classification of partial discharge events in gas-insulated substations using wavelet packet transform and neural network approaches
    • J. Jin, C.S. Chang, C. Chang, T. Hoshino, M. Hanai, and N. Kobayashi Classification of partial discharge events in gas-insulated substations using wavelet packet transform and neural network approaches Sci., Meas. Technol., IEE Proc. 153 2006 55 63
    • (2006) Sci., Meas. Technol., IEE Proc. , vol.153 , pp. 55-63
    • Jin, J.1    Chang, C.S.2    Chang, C.3    Hoshino, T.4    Hanai, M.5    Kobayashi, N.6
  • 31
    • 22744458250 scopus 로고    scopus 로고
    • An improved methodology for application of wavelet transform to partial discharge measurement denoising
    • X. Zhou, C. Zhou, and I.J. Kemp An improved methodology for application of wavelet transform to partial discharge measurement denoising IEEE Trans. Dielectr. Electr. Insul. 12 2005 586 594
    • (2005) IEEE Trans. Dielectr. Electr. Insul. , vol.12 , pp. 586-594
    • Zhou, X.1    Zhou, C.2    Kemp, I.J.3
  • 32
    • 33847740252 scopus 로고    scopus 로고
    • A novel wavelet transform technique for on-line partial discharge measurements. 1. WT de-noising algorithm
    • Z. Hao, T.R. Blackburn, B.T. Phung, and D. Sen A novel wavelet transform technique for on-line partial discharge measurements. 1. WT de-noising algorithm IEEE Trans. Dielectr. Electr. Insul. 14 2007 3 14
    • (2007) IEEE Trans. Dielectr. Electr. Insul. , vol.14 , pp. 3-14
    • Hao, Z.1    Blackburn, T.R.2    Phung, B.T.3    Sen, D.4
  • 34
    • 55149118716 scopus 로고    scopus 로고
    • Application of complex wavelet transform to suppress white noise in GIS UHF PD signals
    • Z. Xu, J. Tang, and C. Sun Application of complex wavelet transform to suppress white noise in GIS UHF PD signals IEEE Trans. Power Delivery 22 2007 1498 1504
    • (2007) IEEE Trans. Power Delivery , vol.22 , pp. 1498-1504
    • Xu, Z.1    Tang, J.2    Sun, C.3
  • 35
    • 0033907320 scopus 로고    scopus 로고
    • Wavelet analysis for classification of multi-source PD patterns
    • E.M. Lalitha, and L. Satish Wavelet analysis for classification of multi-source PD patterns IEEE Trans. Dielectr. Electr. Insul. 7 2000 40 47
    • (2000) IEEE Trans. Dielectr. Electr. Insul. , vol.7 , pp. 40-47
    • Lalitha, E.M.1    Satish, L.2
  • 36
    • 0041410083 scopus 로고    scopus 로고
    • Using improved self-organizing map for partial discharge diagnosis of large turbogenerators
    • H. Yu, and Y.H. Song Using improved self-organizing map for partial discharge diagnosis of large turbogenerators IEEE Trans. Energy Convers. 18 2003 392 399
    • (2003) IEEE Trans. Energy Convers. , vol.18 , pp. 392-399
    • Yu, H.1    Song, Y.H.2
  • 37
    • 0027809841 scopus 로고
    • Diagnosis of partial discharge signals using neural networks and minimum distance classification
    • H.G. Kranz Diagnosis of partial discharge signals using neural networks and minimum distance classification IEEE Trans. Electr. Insul. 28 1993 1016 1024
    • (1993) IEEE Trans. Electr. Insul. , vol.28 , pp. 1016-1024
    • Kranz, H.G.1
  • 38
    • 0029389655 scopus 로고
    • Development of computer-based measurements and their application to PD pattern analysis
    • R.E. James, and B.T. Phung Development of computer-based measurements and their application to PD pattern analysis IEEE Trans. Dielectr. Electr. Insul. 2 1995 838 856
    • (1995) IEEE Trans. Dielectr. Electr. Insul. , vol.2 , pp. 838-856
    • James, R.E.1    Phung, B.T.2
  • 39
    • 0027808474 scopus 로고
    • Neural networks as a tool for recognition of partial discharges
    • E. Gulski, and A. Krivda Neural networks as a tool for recognition of partial discharges IEEE Trans. Electr. Insul. 28 1993 984 1001
    • (1993) IEEE Trans. Electr. Insul. , vol.28 , pp. 984-1001
    • Gulski, E.1    Krivda, A.2
  • 42
    • 0029324920 scopus 로고
    • Can fractal features be used for recognizing 3-D partial discharge patterns
    • L. Satish, and W.S. Zaengl Can fractal features be used for recognizing 3-D partial discharge patterns IEEE Trans. Dielectr. Electr. Insul. 2 1995 352 359
    • (1995) IEEE Trans. Dielectr. Electr. Insul. , vol.2 , pp. 352-359
    • Satish, L.1    Zaengl, W.S.2
  • 43
  • 44
    • 51249122853 scopus 로고    scopus 로고
    • Recognition of UHF PD signals in transformers based on wavelet and fractal theory
    • CEIDP 2007. Annual Report - Conference on
    • J. Zhuorui, W. Youyuan, N. Jiaxin, L. Jian, W. Xueshong, Recognition of UHF PD signals in transformers based on wavelet and fractal theory, in: Electrical Insulation and Dielectric Phenomena, 2007. CEIDP 2007. Annual Report - Conference on, 2007, pp. 192-195.
    • (2007) Electrical Insulation and Dielectric Phenomena, 2007 , pp. 192-195
    • Zhuorui, J.1    Youyuan, W.2    Jiaxin, N.3    Jian, L.4    Xueshong, W.5
  • 45
    • 42149181803 scopus 로고    scopus 로고
    • Partial discharge image recognition influenced by fractal image compression
    • L. Jian, S. Caixin, and S. Grzybowski Partial discharge image recognition influenced by fractal image compression IEEE Trans. Dielectr. Electr. Insul. 15 2008 496 504
    • (2008) IEEE Trans. Dielectr. Electr. Insul. , vol.15 , pp. 496-504
    • Jian, L.1    Caixin, S.2    Grzybowski, S.3
  • 46
    • 84880028958 scopus 로고    scopus 로고
    • Fractal features-based pattern recognition of partial discharge in XLPE power cables using extension method
    • H.C. Chen Fractal features-based pattern recognition of partial discharge in XLPE power cables using extension method Gener., Transm. Distrib., IET 6 2012 1096 1103
    • (2012) Gener., Transm. Distrib., IET , vol.6 , pp. 1096-1103
    • Chen, H.C.1
  • 47
    • 84856962514 scopus 로고    scopus 로고
    • Pattern recognition with cerebellar model articulation controller and fractal features on partial discharges
    • H.-C. Chen, and F.-C. Gu Pattern recognition with cerebellar model articulation controller and fractal features on partial discharges Expert Syst. Appl. 39 2012 6575 6584
    • (2012) Expert Syst. Appl. , vol.39 , pp. 6575-6584
    • Chen, H.-C.1    Gu, F.-C.2
  • 48
    • 80255123396 scopus 로고    scopus 로고
    • Partial discharge pattern recognition of power cable joints using extension method with fractal feature enhancement
    • F.-C. Gu, H.-C. Chang, F.-H. Chen, and C.-C. Kuo Partial discharge pattern recognition of power cable joints using extension method with fractal feature enhancement Expert Syst. Appl. 39 2012 2804 2812
    • (2012) Expert Syst. Appl. , vol.39 , pp. 2804-2812
    • Gu, F.-C.1    Chang, H.-C.2    Chen, F.-H.3    Kuo, C.-C.4
  • 50
    • 54949095072 scopus 로고    scopus 로고
    • Rough-granular approach for impulse fault classification of transformers using cross-wavelet transform
    • D. Dey, B. Chatterjee, S. Chakravorti, and S. Munshi Rough-granular approach for impulse fault classification of transformers using cross-wavelet transform IEEE Trans. Dielectr. Electr. Insul. 15 2008 1297 1304
    • (2008) IEEE Trans. Dielectr. Electr. Insul. , vol.15 , pp. 1297-1304
    • Dey, D.1    Chatterjee, B.2    Chakravorti, S.3    Munshi, S.4
  • 52
    • 77249154114 scopus 로고    scopus 로고
    • Cross-wavelet transform as a new paradigm for feature extraction from noisy partial discharge pulses
    • D. Dey, B. Chatterjee, S. Chakravorti, and S. Munshi Cross-wavelet transform as a new paradigm for feature extraction from noisy partial discharge pulses IEEE Trans. Dielectr. Electr. Insul. 17 2010 157 166
    • (2010) IEEE Trans. Dielectr. Electr. Insul. , vol.17 , pp. 157-166
    • Dey, D.1    Chatterjee, B.2    Chakravorti, S.3    Munshi, S.4
  • 53
    • 78651500131 scopus 로고    scopus 로고
    • Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network
    • D. Evagorou, A. Kyprianou, P.L. Lewin, A. Stavrou, V. Efthymiou, and A.C. Metaxas Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network Sci., Meas. Technol., IET 4 2010 177 192
    • (2010) Sci., Meas. Technol., IET , vol.4 , pp. 177-192
    • Evagorou, D.1    Kyprianou, A.2    Lewin, P.L.3    Stavrou, A.4    Efthymiou, V.5    Metaxas, A.C.6
  • 56
    • 2942561049 scopus 로고    scopus 로고
    • Classification of underwater signals using neural networks
    • C.-H. Chen, J.-D. Lee, and M.-C. Lin Classification of underwater signals using neural networks Tamkang J. Sci. Eng. 3 2000 31 48
    • (2000) Tamkang J. Sci. Eng. , vol.3 , pp. 31-48
    • Chen, C.-H.1    Lee, J.-D.2    Lin, M.-C.3
  • 58
    • 70449367331 scopus 로고    scopus 로고
    • Auto-correlation based intelligent technique for complex waveform presentation and measurement
    • K.P.S. Rana, R. Singh, and K.S. Sayann Auto-correlation based intelligent technique for complex waveform presentation and measurement J. Instrum. 4 2009 P05007
    • (2009) J. Instrum. , vol.4 , pp. P05007
    • Rana, K.P.S.1    Singh, R.2    Sayann, K.S.3
  • 59
    • 84869864483 scopus 로고    scopus 로고
    • An approach based on rough set theory for identification of single and multiple partial discharge source
    • S. Biswas, D. Dey, B. Chatterjee, and S. Chakravorti An approach based on rough set theory for identification of single and multiple partial discharge source Int. J. Electr. Power Energy Syst. 46 2013 163 174
    • (2013) Int. J. Electr. Power Energy Syst. , vol.46 , pp. 163-174
    • Biswas, S.1    Dey, D.2    Chatterjee, B.3    Chakravorti, S.4
  • 61
    • 0000528202 scopus 로고
    • Final state sensitivity: An obstruction to predictability
    • C. Grebogi, S.W. McDonald, E. Ott, and J.A. Yorke Final state sensitivity: an obstruction to predictability Phys. Lett. A 99 1983 415 418
    • (1983) Phys. Lett. A , vol.99 , pp. 415-418
    • Grebogi, C.1    McDonald, S.W.2    Ott, E.3    Yorke, J.A.4
  • 62
    • 0008494528 scopus 로고
    • Determining Lyapunov exponents from a time series
    • A. Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano Determining Lyapunov exponents from a time series Physica D 16 7 1985 285 317
    • (1985) Physica D , vol.16 , Issue.7 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 63
    • 84875736092 scopus 로고    scopus 로고
    • Phase determination of partial discharge source in three-phase transmission lines using discrete wavelet transform and probabilistic neural networks
    • M.-S. Su, J.-F. Chen, and Y.-H. Lin Phase determination of partial discharge source in three-phase transmission lines using discrete wavelet transform and probabilistic neural networks Int. J. Electr. Power Energy Syst. 51 10 2013 27 34
    • (2013) Int. J. Electr. Power Energy Syst. , vol.51 , Issue.10 , pp. 27-34
    • Su, M.-S.1    Chen, J.-F.2    Lin, Y.-H.3
  • 64
    • 0026882994 scopus 로고
    • Pattern recognition of partial discharge in XLPE cables using a neural network
    • H. Suzuki, and T. Endoh Pattern recognition of partial discharge in XLPE cables using a neural network IEEE Trans. Electr. Insul. 27 1992 543 549
    • (1992) IEEE Trans. Electr. Insul. , vol.27 , pp. 543-549
    • Suzuki, H.1    Endoh, T.2
  • 65
    • 0029185063 scopus 로고
    • Neural network system using the multi-layer perceptron technique for the recognition of PD pulse shapes due to cavities and electrical trees
    • A.A. Mazroua, R. Bartnikas, and M.M.A. Salama Neural network system using the multi-layer perceptron technique for the recognition of PD pulse shapes due to cavities and electrical trees IEEE Trans. Power Delivery 10 1995 92 96
    • (1995) IEEE Trans. Power Delivery , vol.10 , pp. 92-96
    • Mazroua, A.A.1    Bartnikas, R.2    Salama, M.M.A.3
  • 66
    • 0008929555 scopus 로고
    • Embedding fields: A theory of learning with physiological implications
    • S. Grossberg Embedding fields: a theory of learning with physiological implications J. Math. Psychol. 6 1969 209 239
    • (1969) J. Math. Psychol. , vol.6 , pp. 209-239
    • Grossberg, S.1
  • 67
    • 0023834037 scopus 로고
    • Application of counter propagation networks
    • R. Hecht-Nielsen Application of counter propagation networks Neural Networks 1 1988 131 139
    • (1988) Neural Networks , vol.1 , pp. 131-139
    • Hecht-Nielsen, R.1
  • 68
    • 0036506017 scopus 로고    scopus 로고
    • Determination of neural-network topology for partial discharge pulse pattern recognition
    • M.M.A. Salama, and R. Bartnikas Determination of neural-network topology for partial discharge pulse pattern recognition IEEE Trans. Neural Networks 13 2002 446 456
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 446-456
    • Salama, M.M.A.1    Bartnikas, R.2
  • 69
    • 60249090071 scopus 로고    scopus 로고
    • A novel clustering algorithm based on the extension theory and genetic algorithm
    • M.-H. Wang, Y.-F. Tseng, H.-C. Chen, and K.-H. Chao A novel clustering algorithm based on the extension theory and genetic algorithm Expert Syst. Appl. 36 5 2009 8269 8276
    • (2009) Expert Syst. Appl. , vol.36 , Issue.5 , pp. 8269-8276
    • Wang, M.-H.1    Tseng, Y.-F.2    Chen, H.-C.3    Chao, K.-H.4
  • 70
    • 80255124876 scopus 로고    scopus 로고
    • A novel extension neural network based partial discharge pattern recognition method for high-voltage power apparatus
    • H.-C. Chen, F.-C. Gu, and M.-H. Wang A novel extension neural network based partial discharge pattern recognition method for high-voltage power apparatus Expert Syst. Appl. 39 2012 3423 3431
    • (2012) Expert Syst. Appl. , vol.39 , pp. 3423-3431
    • Chen, H.-C.1    Gu, F.-C.2    Wang, M.-H.3
  • 71
    • 84894252201 scopus 로고    scopus 로고
    • Application of an ensemble neural network for classifying partial discharge patterns
    • A. Abubakar Mas'ud, B.G. Stewart, and S.G. McMeekin Application of an ensemble neural network for classifying partial discharge patterns Electric Power Syst. Res. 110 2014 154 162
    • (2014) Electric Power Syst. Res. , vol.110 , pp. 154-162
    • Abubakar Mas'Ud, A.1    Stewart, B.G.2    McMeekin, S.G.3
  • 72
    • 0030126896 scopus 로고    scopus 로고
    • PD classification by a modular neural network based on task decomposition
    • T. Hong, M.T.C. Fang, and D. Hilder PD classification by a modular neural network based on task decomposition IEEE Trans. Dielectr. Electr. Insul. 3 1996 207 212
    • (1996) IEEE Trans. Dielectr. Electr. Insul. , vol.3 , pp. 207-212
    • Hong, T.1    Fang, M.T.C.2    Hilder, D.3
  • 73
    • 0035483913 scopus 로고    scopus 로고
    • Detection and classification of partial discharge using a feature decomposition-based modular neural network
    • H. Tao, and M.T.C. Fang Detection and classification of partial discharge using a feature decomposition-based modular neural network IEEE Trans. Instrum. Meas. 50 2001 1349 1354
    • (2001) IEEE Trans. Instrum. Meas. , vol.50 , pp. 1349-1354
    • Tao, H.1    Fang, M.T.C.2
  • 74
    • 25844513261 scopus 로고    scopus 로고
    • Conception of complex probabilistic neural network system for classification of partial discharge patterns using multifarious inputs
    • B. Karthikeyan, S. Gopal, and M. Vimala Conception of complex probabilistic neural network system for classification of partial discharge patterns using multifarious inputs Expert Syst. Appl. 29 2005 953 963
    • (2005) Expert Syst. Appl. , vol.29 , pp. 953-963
    • Karthikeyan, B.1    Gopal, S.2    Vimala, M.3
  • 75
    • 0025399335 scopus 로고
    • Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification
    • D.F. Specht Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification IEEE Trans. Neural Networks 1 1990 111 121
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 111-121
    • Specht, D.F.1
  • 76
    • 0024123401 scopus 로고
    • Probabilistic neural networks for classification, mapping, or associative memory
    • D.F. Specht, Probabilistic neural networks for classification, mapping, or associative memory, in: Neural Networks, IEEE International Conference on, vol. 1, 1988, pp. 525-532.
    • (1988) Neural Networks, IEEE International Conference , vol.1 , pp. 525-532
    • Specht, D.F.1
  • 77
    • 79952445682 scopus 로고    scopus 로고
    • Orthogonal least square center selection technique - A robust scheme for multiple source Partial Discharge pattern recognition using Radial Basis Probabilistic Neural Network
    • S. Venkatesh, and S. Gopal Orthogonal least square center selection technique - A robust scheme for multiple source Partial Discharge pattern recognition using Radial Basis Probabilistic Neural Network Expert Syst. Appl. 38 2011 8978 8989
    • (2011) Expert Syst. Appl. , vol.38 , pp. 8978-8989
    • Venkatesh, S.1    Gopal, S.2
  • 79
    • 0027576990 scopus 로고
    • Use of hidden Markov models for partial discharge pattern classification
    • L. Satish, and B.I. Gururaj Use of hidden Markov models for partial discharge pattern classification IEEE Trans. Electr. Insul. 28 1993 172 182
    • (1993) IEEE Trans. Electr. Insul. , vol.28 , pp. 172-182
    • Satish, L.1    Gururaj, B.I.2
  • 81
    • 33745626431 scopus 로고    scopus 로고
    • Partial discharge pattern recognition by neuro-fuzzy networks in heat-shrinkable joints and terminations of XLPE insulated distribution cables
    • C. Mazzetti, F.M.F. Mascioli, F. Baldini, M. Panella, R. Risica, and R. Bartnikas Partial discharge pattern recognition by neuro-fuzzy networks in heat-shrinkable joints and terminations of XLPE insulated distribution cables IEEE Trans. Power Delivery 21 2006 1035 1044
    • (2006) IEEE Trans. Power Delivery , vol.21 , pp. 1035-1044
    • Mazzetti, C.1    Mascioli, F.M.F.2    Baldini, F.3    Panella, M.4    Risica, R.5    Bartnikas, R.6
  • 82
    • 0027542561 scopus 로고
    • Fuzzy min-max neural networks - Part 2: Clustering
    • P.K. Simpson Fuzzy min-max neural networks - Part 2: Clustering IEEE Trans. Fuzzy Syst. 1 1993 32
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 32
    • Simpson, P.K.1
  • 85
    • 0029307137 scopus 로고
    • A nonlinear projection method based on Kohonen's topology preserving maps
    • M.A. Kraaijveld, M. Jianchang, and A.K. Jain A nonlinear projection method based on Kohonen's topology preserving maps IEEE Trans. Neural Networks 6 1995 548 559
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 548-559
    • Kraaijveld, M.A.1    Jianchang, M.2    Jain, A.K.3
  • 87
    • 78650586389 scopus 로고    scopus 로고
    • Partial discharge signal denoising with spatially adaptive wavelet thresholding and support vector machines
    • H.d.O. Mota, L.C.D.d. Rocha, T.C.d.M. Salles, and F.H. Vasconcelos Partial discharge signal denoising with spatially adaptive wavelet thresholding and support vector machines Electric Power Syst. Res. 81 2011 644 659
    • (2011) Electric Power Syst. Res. , vol.81 , pp. 644-659
    • Mota, D.H.O.1    Rocha, L.C.D.F.2    Salles, D.C.T.M.3    Vasconcelos, F.H.4
  • 88
    • 77249107870 scopus 로고    scopus 로고
    • Partial discharge source discrimination using a support vector machine
    • L. Hao, and P.L. Lewin Partial discharge source discrimination using a support vector machine IEEE Trans. Dielectr. Electr. Insul. 17 2010 189 197
    • (2010) IEEE Trans. Dielectr. Electr. Insul. , vol.17 , pp. 189-197
    • Hao, L.1    Lewin, P.L.2
  • 89
    • 34250206661 scopus 로고    scopus 로고
    • SVM classification of contaminating particles in liquid dielectrics using higher order statistics of electrical and acoustic PD measurements
    • R.M. Sharkawy, R.S. Mangoubi, T. Abdel-Galil, M.M.A. Salama, and R. Bartnikas SVM classification of contaminating particles in liquid dielectrics using higher order statistics of electrical and acoustic PD measurements IEEE Trans. Dielectr. Electr. Insul. 14 2007 669 678
    • (2007) IEEE Trans. Dielectr. Electr. Insul. , vol.14 , pp. 669-678
    • Sharkawy, R.M.1    Mangoubi, R.S.2    Abdel-Galil, T.3    Salama, M.M.A.4    Bartnikas, R.5
  • 90
    • 84872146298 scopus 로고    scopus 로고
    • Realization of partial discharge signals in transformer oils utilizing advanced computational techniques
    • K. Ibrahim, R.M. Sharkawy, M.M.A. Salama, and R. Bartnikas Realization of partial discharge signals in transformer oils utilizing advanced computational techniques IEEE Trans. Dielectr. Electr. Insul. 19 2012 1971 1981
    • (2012) IEEE Trans. Dielectr. Electr. Insul. , vol.19 , pp. 1971-1981
    • Ibrahim, K.1    Sharkawy, R.M.2    Salama, M.M.A.3    Bartnikas, R.4
  • 93
    • 77953089698 scopus 로고    scopus 로고
    • FSVM-CIL: Fuzzy support vector machines for class imbalance learning
    • R. Batuwita, and V. Palade FSVM-CIL: fuzzy support vector machines for class imbalance learning IEEE Trans. Fuzzy Syst. 18 2010 558 571
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , pp. 558-571
    • Batuwita, R.1    Palade, V.2
  • 94
    • 11244255334 scopus 로고    scopus 로고
    • Rough set theory for data mining for fault diagnosis on distribution feeder
    • J.T. Peng, C.F. Chien, and T.L.B. Tseng Rough set theory for data mining for fault diagnosis on distribution feeder Gener., Transm. Distrib., IEE Proc. 151 2004 689 697
    • (2004) Gener., Transm. Distrib., IEE Proc. , vol.151 , pp. 689-697
    • Peng, J.T.1    Chien, C.F.2    Tseng, T.L.B.3
  • 96
    • 0034960598 scopus 로고    scopus 로고
    • Rough set theory: A data mining tool for semiconductor manufacturing
    • A. Kusiak Rough set theory: a data mining tool for semiconductor manufacturing IEEE Trans. Electron. Packag. Manuf. 24 2001 44 50
    • (2001) IEEE Trans. Electron. Packag. Manuf. , vol.24 , pp. 44-50
    • Kusiak, A.1
  • 97
    • 0016556021 scopus 로고
    • A new approach to manipulator control: The cerebellar model articulation controller
    • J.S. Albus A new approach to manipulator control: the cerebellar model articulation controller J. Dyn. Syst. Meas. Contr. 97 1975 220 227
    • (1975) J. Dyn. Syst. Meas. Contr. , vol.97 , pp. 220-227
    • Albus, J.S.1
  • 99
    • 0025414878 scopus 로고
    • Integrating neural networks and knowledge-based systems for intelligent robotic control
    • D.A. Handelman, S.H. Lane, and J.J. Gelfand Integrating neural networks and knowledge-based systems for intelligent robotic control Control Syst. Mag., IEEE 10 1990 77 87
    • (1990) Control Syst. Mag., IEEE , vol.10 , pp. 77-87
    • Handelman, D.A.1    Lane, S.H.2    Gelfand, J.J.3
  • 101
    • 84880346490 scopus 로고    scopus 로고
    • Spectral features for the classification of partial discharge signals from selected insulation defect models
    • R. Ambikairajah, P. Bao Toan, J. Ravishankar, and T. Blackburn Spectral features for the classification of partial discharge signals from selected insulation defect models Sci., Meas. Technol., IET 7 2013 104 111
    • (2013) Sci., Meas. Technol., IET , vol.7 , pp. 104-111
    • Ambikairajah, R.1    Bao Toan, P.2    Ravishankar, J.3    Blackburn, T.4
  • 102
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • A. Jain, and D. Zongker Feature selection: evaluation, application, and small sample performance IEEE Trans. Pattern Anal. Mach. Intell. 19 1997 153 158
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , pp. 153-158
    • Jain, A.1    Zongker, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.