메뉴 건너뛰기




Volumn 22, Issue 4, 2012, Pages 1469-1492

Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization i: A generic algorithmic framework

Author keywords

Complexity; Convex optimization; Large deviation; Stochastic approximation; Stochastic programming

Indexed keywords

ALGORITHMIC FRAMEWORK; ASYMPTOTICALLY OPTIMAL; COMPLEXITY; COMPOSITE OPTIMIZATION; CONVERGENCE RATES; CONVEX PROBLEMS; LARGE DEVIATIONS; NUMBER OF ITERATIONS; OPTIMAL RATE; STEP SIZE; STOCHASTIC APPROXIMATION ALGORITHMS; STOCHASTIC APPROXIMATIONS;

EID: 84871576447     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/110848864     Document Type: Article
Times cited : (367)

References (41)
  • 1
    • 33747151859 scopus 로고    scopus 로고
    • Interior gradient and proximal methods for convex and conic optimization
    • A. Auslender and M. Teboulle, Interior gradient and proximal methods for convex and conic optimization, SIAM J. Optim., 16 (2006), pp. 697-725.
    • (2006) SIAM J. Optim , vol.16 , pp. 697-725
    • Auslender, A.1    Teboulle, M.2
  • 3
    • 17444361978 scopus 로고    scopus 로고
    • Non-Euclidean restricted memory level method for large-scale convex optimization
    • A. Ben-Tal and A. Nemirovski, Non-Euclidean restricted memory level method for large-scale convex optimization, Math. Program., 102 (2005), pp. 407-456.
    • (2005) Math. Program. , vol.102 , pp. 407-456
    • Ben-Tal, A.1    Nemirovski, A.2
  • 4
    • 0036342276 scopus 로고    scopus 로고
    • The ordered subsets mirror descent optimization method with applications to tomography
    • A. Ben-Tal, T. Margalit, and A. Nemirovski, The ordered subsets mirror descent optimization method with applications to tomography, SIAM J. Optim., 12 (2001), pp. 79-108.
    • (2001) SIAM J. Optim , vol.12 , pp. 79-108
    • Ben-Tal, A.1    Margalit, T.2    Nemirovski, A.3
  • 6
    • 49949144765 scopus 로고
    • The relaxation method of finding the common point convex sets and its application to the solution of problems in convex programming
    • L. M. Bregman, The relaxation method of finding the common point convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Phys., 7 (1967), pp. 200-217.
    • (1967) USSR Comput. Math. Phys. , vol.7 , pp. 200-217
    • Bregman, L.M.1
  • 7
    • 0000792517 scopus 로고
    • On a stochastic approximation method
    • K. L. Chung, On a stochastic approximation method, Ann. Math. Statist., 25 (1954), pp. 463- 483.
    • (1954) Ann. Math. Statist. , vol.25 , pp. 463-483
    • Chung, K.L.1
  • 9
    • 0020498889 scopus 로고
    • Stochastic quasigradient methods and their application to system optimization
    • Y. Ermoliev, Stochastic quasigradient methods and their application to system optimization, Stochastics, 9 (1983), pp. 1-36.
    • (1983) Stochastics , vol.9 , pp. 1-36
    • Ermoliev, Y.1
  • 10
    • 30244575435 scopus 로고
    • Nonstationary stochastic programming problems
    • A. Gaivoronski, Nonstationary stochastic programming problems, Kybernetika, 4 (1978), pp. 89-92.
    • (1978) Kybernetika , vol.4 , pp. 89-92
    • Gaivoronski, A.1
  • 11
    • 84871579805 scopus 로고    scopus 로고
    • Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization II: Shrinking procedures and optimal algorithms
    • submitted
    • S. Ghadimi and G. Lan, Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: Shrinking procedures and optimal algorithms, SIAM J. Optim., submitted.
    • SIAM J. Optim
    • Ghadimi, S.1    Lan, G.2
  • 12
    • 77956508892 scopus 로고    scopus 로고
    • Accelerated gradient methods for stochastic optimization and online learning
    • C. Hu, J. T. Kwok, and W. Pan, Accelerated gradient methods for stochastic optimization and online learning, in Proceedings of NIPS, 2009.
    • (2009) Proceedings of NIPS
    • Hu, C.1    Kwok, J.T.2    Pan, W.3
  • 13
    • 31344435933 scopus 로고    scopus 로고
    • Recursive aggregation of estimators via the mirror descent algorithm with average
    • A. Juditsky, A. Nazin, A. B. Tsybakov, and N. Vayatis, Recursive aggregation of estimators via the mirror descent algorithm with average, Probl. Inf. Transm., 41 (2005), p. n.4.
    • (2005) Probl. Inf. Transm. , vol.41 , pp. 4
    • Juditsky, A.1    Nazin, A.2    Tsybakov, A.B.3    Vayatis, N.4
  • 14
    • 84865676844 scopus 로고    scopus 로고
    • First-order methods for nonsmooth convex large-scale optimization, I: General purpose methods
    • S. Sra, S. Nowozin, and S. J. Wright, eds., MIT Press, Cambridge, MA
    • A. Juditsky and A. Nemirovski, First-order methods for nonsmooth convex large-scale optimization, I: General purpose methods, in Optimization for Machine Learning, S. Sra, S. Nowozin, and S. J. Wright, eds., MIT Press, Cambridge, MA, 2011.
    • (2011) Optimization for Machine Learning
    • Juditsky, A.1    Nemirovski, A.2
  • 17
    • 0031190440 scopus 로고    scopus 로고
    • Proximal minimization methods with generalized Bregman functions
    • K. C. Kiwiel, Proximal minimization methods with generalized Bregman functions, SIAM J. Control Optim., 35 (1997), pp. 1142-1168.
    • (1997) SIAM J. Control Optim. , vol.35 , pp. 1142-1168
    • Kiwiel, K.C.1
  • 18
    • 0036013019 scopus 로고    scopus 로고
    • The sample average approximation method for stochastic discrete optimization
    • A. J. Kleywegt, A. Shapiro, and T. H. de Mello, The sample average approximation method for stochastic discrete optimization, SIAM J. Optim., 12 (2001), pp. 479-502.
    • (2001) SIAM J. Optim , vol.12 , pp. 479-502
    • Kleywegt, A.J.1    Shapiro, A.2    De Mello, T.H.3
  • 19
    • 33750329737 scopus 로고    scopus 로고
    • Stochastic approximation and recursive algorithms and applications
    • Springer-Verlag, New York
    • H. J. Kushner and G. Yin, Stochastic Approximation and Recursive Algorithms and Applications, Appl. Math. 35, Springer-Verlag, New York, 2003.
    • (2003) Appl. Math. , vol.35
    • Kushner, H.J.1    Yin, G.2
  • 20
    • 84862273593 scopus 로고    scopus 로고
    • An optimal method for stochastic composite optimization
    • to appear; DOI: 10.1007/s10107-010-0434-y
    • G. Lan, An optimal method for stochastic composite optimization, Math. Program., to appear; DOI: 10.1007/s10107-010-0434-y.
    • Math. Program.
    • Lan, G.1
  • 21
    • 84865688604 scopus 로고    scopus 로고
    • Validation analysis of mirror descent stochastic approximation method
    • to appear
    • G. Lan, A. Nemirovski, and A. Shapiro, Validation analysis of mirror descent stochastic approximation method, Math. Program., to appear.
    • Math. Program.
    • Lan, G.1    Nemirovski, A.2    Shapiro, A.3
  • 23
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation approach to stochastic programming, SIAM J. Optim., 19 (2009), pp. 1574-1609.
    • (2009) SIAM J. Optim , vol.19 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 25
    • 34548480020 scopus 로고
    • A method for unconstrained convex minimization problem with the rate of convergence O(1/k2)
    • Y. E. Nesterov, A method for unconstrained convex minimization problem with the rate of convergence O(1/k2), Dokl. Akad. Nauk. SSSR, 269 (1983), pp. 543-547.
    • (1983) Dokl. Akad. Nauk. SSSR , vol.269 , pp. 543-547
    • Nesterov, Y.E.1
  • 27
    • 65249121279 scopus 로고    scopus 로고
    • Primal-dual subgradient methods for convex problems
    • Y. E. Nesterov, Primal-dual subgradient methods for convex problems, Math. Program., 120 (2006), pp. 221-259.
    • (2006) Math. Program. , vol.120 , pp. 221-259
    • Nesterov, Y.E.1
  • 28
    • 67651063011 scopus 로고    scopus 로고
    • Technical report, Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Belgium
    • Y. E. Nesterov, Gradient Methods for Minimizing Composite Objective Functions, Technical report, Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Belgium, 2007.
    • (2007) Gradient Methods for Minimizing Composite Objective Functions
    • Nesterov, Y.E.1
  • 30
    • 0000828406 scopus 로고
    • New stochastic approximation type procedures
    • B. T. Polyak, New stochastic approximation type procedures, Avtomat. i Telemekh., 7 (1990), pp. 98-107.
    • (1990) Avtomat. i Telemekh. , vol.7 , pp. 98-107
    • Polyak, B.T.1
  • 31
    • 0026899240 scopus 로고
    • Acceleration of stochastic approximation by averaging
    • B. T. Polyak and A. B. Juditsky, Acceleration of stochastic approximation by averaging, SIAM J. Control Optim., 30 (1992), pp. 838-855.
    • (1992) SIAM J. Control Optim. , vol.30 , pp. 838-855
    • Polyak, B.T.1    Juditsky, A.B.2
  • 32
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statist., 22 (1951), pp. 400-407.
    • (1951) Ann. Math. Statist. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 33
    • 0022693667 scopus 로고
    • A method of aggregate stochastic subgradients with on-line stepsize rules for convex stochastic programming problems
    • A. Ruszczy'nski and W. Sysk, A method of aggregate stochastic subgradients with on-line stepsize rules for convex stochastic programming problems, Math. Program. Study, 28 (1986), pp. 113-131.
    • (1986) Math. Program. Study , vol.28 , pp. 113-131
    • Ruszczy'Nski, A.1    Sysk, W.2
  • 34
    • 0000431134 scopus 로고
    • Asymptotic distribution of stochastic approximation
    • J. Sacks, Asymptotic distribution of stochastic approximation, Ann. Math. Statist., 29 (1958), pp. 373-409.
    • (1958) Ann. Math. Statist. , vol.29 , pp. 373-409
    • Sacks, J.1
  • 35
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for svm
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro, Pegasos: Primal estimated sub-gradient solver for svm, in Proceedings of ICML, 2007, pp. 807-814.
    • (2007) Proceedings of ICML , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 36
    • 28044445224 scopus 로고    scopus 로고
    • Monte Carlo sampling methods
    • A. Ruszczy'nski and A. Shapiro, eds., North-Holland, Amsterdam
    • A. Shapiro, Monte Carlo sampling methods, in Stochastic Programming, A. Ruszczy'nski and A. Shapiro, eds., North-Holland, Amsterdam, 2003.
    • (2003) Stochastic Programming
    • Shapiro, A.1
  • 37
    • 33744740175 scopus 로고    scopus 로고
    • Online learning algorithms
    • S. Smale and Y. Yao, Online learning algorithms, Found. Comput. Math, 6 (2005), pp. 145- 170.
    • (2005) Found. Comput. Math , vol.6 , pp. 145-170
    • Smale, S.1    Yao, Y.2
  • 39
    • 0031285685 scopus 로고    scopus 로고
    • Convergence of proximal-like algorithms
    • M. Teboulle, Convergence of proximal-like algorithms, SIAM J. Optim., 7 (1997), pp. 1069- 1083.
    • (1997) SIAM J. Optim , vol.7 , pp. 1069-1083
    • Teboulle, M.1
  • 41


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.