-
1
-
-
84963019945
-
Inequalities for a pair of processes stopped at a random time
-
BARLOW, M. T., JACKA, S. D. and YOR, M. (1986). Inequalities for a pair of processes stopped at a random time. Proc. London. Math. Soc. (3) 52 142-172.
-
(1986)
Proc. London. Math. Soc. (3)
, vol.52
, pp. 142-172
-
-
Barlow, M.T.1
Jacka, S.D.2
Yor, M.3
-
2
-
-
0001917727
-
Probability inequalities for sums of independent random variables
-
BENNETT, G. (1962). Probability inequalities for sums of independent random variables, J. Amer. Statist. Assoc. 57 33-45.
-
(1962)
J. Amer. Statist. Assoc.
, vol.57
, pp. 33-45
-
-
Bennett, G.1
-
5
-
-
0003549661
-
-
Springer, New York
-
CHOW, Y. S. and TEICHER, H. (1988). Probability Theory: Independence, Interchangeability, Martingales, 2nd ed. Springer, New York.
-
(1988)
Probability Theory: Independence, Interchangeability, Martingales, 2nd Ed.
-
-
Chow, Y.S.1
Teicher, H.2
-
6
-
-
0002907945
-
A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement
-
DE LA PEÑA, H. (1994). A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement. Ann. Inst. H. Poincaré Probab. Statist. 30 197-211.
-
(1994)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.30
, pp. 197-211
-
-
De La Peña, H.1
-
7
-
-
0009232260
-
A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement.
-
Correction
-
DE LA PEÑA, V. H. (1995). A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement. (Correction). Ann. Inst. H. Poincaré. Probab. Statist. 31 703-704.
-
(1995)
Ann. Inst. H. Poincaré. Probab. Statist.
, vol.31
, pp. 703-704
-
-
De La Peña, V.H.1
-
10
-
-
0002384441
-
On tail probabilities for martingales
-
FREEDMAN, D. (1975). On tail probabilities for martingales. Ann. Probab. 3 100-118.
-
(1975)
Ann. Probab.
, vol.3
, pp. 100-118
-
-
Freedman, D.1
-
12
-
-
0000291602
-
Best constants in martingale version of Rosenthal's inequality
-
HITCZENKO, P. (1990b). Best constants in martingale version of Rosenthal's inequality. Ann. Probab. 18 1656-1668.
-
(1990)
Ann. Probab.
, vol.18
, pp. 1656-1668
-
-
Hitczenko, P.1
-
13
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30.
-
(1963)
J. Amer. Statist. Assoc.
, vol.58
, pp. 13-30
-
-
Hoeffding, W.1
-
14
-
-
0030582827
-
Deviation inequalities for continuous martingales
-
To appear
-
KHOSHNEVISAN, D. (1996). Deviation inequalities for continuous martingales. Stochastic Process. Appl. To appear.
-
(1996)
Stochastic Process. Appl.
-
-
Khoshnevisan, D.1
-
17
-
-
0009153260
-
A uniform CLT for uniformly bounded families of martingale differences
-
LEVENTHAL, S. A. (1989). A uniform CLT for uniformly bounded families of martingale differences. J. Theoret. Probab. 2 271-287.
-
(1989)
J. Theoret. Probab.
, vol.2
, pp. 271-287
-
-
Leventhal, S.A.1
-
18
-
-
0000986430
-
A Hölder condition for Brownian local time
-
MCKEAN, H. P. (1962). A Hölder condition for Brownian local time. J. Math. Kyoto Univ. 1 195-201.
-
(1962)
J. Math. Kyoto Univ.
, vol.1
, pp. 195-201
-
-
McKean, H.P.1
-
19
-
-
0009221785
-
An approach to inequalities for the distributions of infinite-dimensional martingales
-
(R. M. Dudley, M. G. Hahn and J. Kuelbs, eds.). Birkhäuser, Boston
-
PINELIS, I. (1992). An approach to inequalities for the distributions of infinite-dimensional martingales. In Probability in Banach Spaces 8 (R. M. Dudley, M. G. Hahn and J. Kuelbs, eds.) 128-134. Birkhäuser, Boston.
-
(1992)
Probability in Banach Spaces 8
, pp. 128-134
-
-
Pinelis, I.1
-
20
-
-
0001638327
-
Optimum bounds for the distributions of martingales in Banach spaces
-
PINELIS, I. (1994). Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab. 22 1679-1706.
-
(1994)
Ann. Probab.
, vol.22
, pp. 1679-1706
-
-
Pinelis, I.1
-
21
-
-
0009155075
-
Sharp exponential inequalities for the martingales in the 2-smooth Banach spaces and applications to "scalarizing" decoupling
-
(J. Hoffmann-Jorgensen, J. Kuelbs and M. Marcus, eds.) Birkhäuser, Boston
-
PINELIS, I. (1995). Sharp exponential inequalities for the martingales in the 2-smooth Banach spaces and applications to "scalarizing" decoupling. In Probability in Banach Spaces 9 55-70 (J. Hoffmann-Jorgensen, J. Kuelbs and M. Marcus, eds.) Birkhäuser, Boston.
-
(1995)
Probability in Banach Spaces 9
, pp. 55-70
-
-
Pinelis, I.1
-
22
-
-
0000290233
-
Exact exponential bounds for sums of independent random variables
-
PINELIS, I. and UTEV, S. A. (1989). Exact exponential bounds for sums of independent random variables. Theory Probab. Appl. 34 304-346.
-
(1989)
Theory Probab. Appl.
, vol.34
, pp. 304-346
-
-
Pinelis, I.1
Utev, S.A.2
|