메뉴 건너뛰기




Volumn 27, Issue 1, 1999, Pages 537-564

A general class of exponential inequalities for martingales and ratios

Author keywords

Decoupling; Exponential martingale inequalities; Self normalized

Indexed keywords


EID: 0032622766     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1022677271     Document Type: Article
Times cited : (149)

References (26)
  • 1
    • 84963019945 scopus 로고
    • Inequalities for a pair of processes stopped at a random time
    • BARLOW, M. T., JACKA, S. D. and YOR, M. (1986). Inequalities for a pair of processes stopped at a random time. Proc. London. Math. Soc. (3) 52 142-172.
    • (1986) Proc. London. Math. Soc. (3) , vol.52 , pp. 142-172
    • Barlow, M.T.1    Jacka, S.D.2    Yor, M.3
  • 2
    • 0001917727 scopus 로고
    • Probability inequalities for sums of independent random variables
    • BENNETT, G. (1962). Probability inequalities for sums of independent random variables, J. Amer. Statist. Assoc. 57 33-45.
    • (1962) J. Amer. Statist. Assoc. , vol.57 , pp. 33-45
    • Bennett, G.1
  • 6
    • 0002907945 scopus 로고
    • A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement
    • DE LA PEÑA, H. (1994). A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement. Ann. Inst. H. Poincaré Probab. Statist. 30 197-211.
    • (1994) Ann. Inst. H. Poincaré Probab. Statist. , vol.30 , pp. 197-211
    • De La Peña, H.1
  • 7
    • 0009232260 scopus 로고
    • A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement.
    • Correction
    • DE LA PEÑA, V. H. (1995). A bound on the moment generating function of a sum of dependent variables with an application to simple random sampling without replacement. (Correction). Ann. Inst. H. Poincaré. Probab. Statist. 31 703-704.
    • (1995) Ann. Inst. H. Poincaré. Probab. Statist. , vol.31 , pp. 703-704
    • De La Peña, V.H.1
  • 10
    • 0002384441 scopus 로고
    • On tail probabilities for martingales
    • FREEDMAN, D. (1975). On tail probabilities for martingales. Ann. Probab. 3 100-118.
    • (1975) Ann. Probab. , vol.3 , pp. 100-118
    • Freedman, D.1
  • 12
    • 0000291602 scopus 로고
    • Best constants in martingale version of Rosenthal's inequality
    • HITCZENKO, P. (1990b). Best constants in martingale version of Rosenthal's inequality. Ann. Probab. 18 1656-1668.
    • (1990) Ann. Probab. , vol.18 , pp. 1656-1668
    • Hitczenko, P.1
  • 13
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30.
    • (1963) J. Amer. Statist. Assoc. , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 14
    • 0030582827 scopus 로고    scopus 로고
    • Deviation inequalities for continuous martingales
    • To appear
    • KHOSHNEVISAN, D. (1996). Deviation inequalities for continuous martingales. Stochastic Process. Appl. To appear.
    • (1996) Stochastic Process. Appl.
    • Khoshnevisan, D.1
  • 17
    • 0009153260 scopus 로고
    • A uniform CLT for uniformly bounded families of martingale differences
    • LEVENTHAL, S. A. (1989). A uniform CLT for uniformly bounded families of martingale differences. J. Theoret. Probab. 2 271-287.
    • (1989) J. Theoret. Probab. , vol.2 , pp. 271-287
    • Leventhal, S.A.1
  • 18
    • 0000986430 scopus 로고
    • A Hölder condition for Brownian local time
    • MCKEAN, H. P. (1962). A Hölder condition for Brownian local time. J. Math. Kyoto Univ. 1 195-201.
    • (1962) J. Math. Kyoto Univ. , vol.1 , pp. 195-201
    • McKean, H.P.1
  • 19
    • 0009221785 scopus 로고
    • An approach to inequalities for the distributions of infinite-dimensional martingales
    • (R. M. Dudley, M. G. Hahn and J. Kuelbs, eds.). Birkhäuser, Boston
    • PINELIS, I. (1992). An approach to inequalities for the distributions of infinite-dimensional martingales. In Probability in Banach Spaces 8 (R. M. Dudley, M. G. Hahn and J. Kuelbs, eds.) 128-134. Birkhäuser, Boston.
    • (1992) Probability in Banach Spaces 8 , pp. 128-134
    • Pinelis, I.1
  • 20
    • 0001638327 scopus 로고
    • Optimum bounds for the distributions of martingales in Banach spaces
    • PINELIS, I. (1994). Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab. 22 1679-1706.
    • (1994) Ann. Probab. , vol.22 , pp. 1679-1706
    • Pinelis, I.1
  • 21
    • 0009155075 scopus 로고
    • Sharp exponential inequalities for the martingales in the 2-smooth Banach spaces and applications to "scalarizing" decoupling
    • (J. Hoffmann-Jorgensen, J. Kuelbs and M. Marcus, eds.) Birkhäuser, Boston
    • PINELIS, I. (1995). Sharp exponential inequalities for the martingales in the 2-smooth Banach spaces and applications to "scalarizing" decoupling. In Probability in Banach Spaces 9 55-70 (J. Hoffmann-Jorgensen, J. Kuelbs and M. Marcus, eds.) Birkhäuser, Boston.
    • (1995) Probability in Banach Spaces 9 , pp. 55-70
    • Pinelis, I.1
  • 22
    • 0000290233 scopus 로고
    • Exact exponential bounds for sums of independent random variables
    • PINELIS, I. and UTEV, S. A. (1989). Exact exponential bounds for sums of independent random variables. Theory Probab. Appl. 34 304-346.
    • (1989) Theory Probab. Appl. , vol.34 , pp. 304-346
    • Pinelis, I.1    Utev, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.