-
1
-
-
24044549330
-
Interior projection-like methods for monotone variational inequalities
-
A. Auslender and M. Teboulle, Interior projection-like methods for monotone variational inequalities, Math. Program., 104 (2005), pp. 39-68.
-
(2005)
Math. Program.
, vol.104
, pp. 39-68
-
-
Auslender, A.1
Teboulle, M.2
-
2
-
-
33747151859
-
Interior gradient and proximal methods for convex and conic optimization
-
A. Auslender and M. Teboulle, Interior gradient and proximal methods for convex and conic optimization, SIAM J. Optim., 16 (2006), pp. 697-725.
-
(2006)
SIAM J. Optim.
, vol.16
, pp. 697-725
-
-
Auslender, A.1
Teboulle, M.2
-
3
-
-
0003505303
-
-
Masson, Paris, English translation: Adaptive Algorithms and Stochastic Approximations, Springer-Verlag, Berlin, 1990
-
A. Benveniste, M. Métivier, and P. Priouret, Algorithmes adaptatifs et approximations stochastiques, Masson, Paris, 1987. English translation: Adaptive Algorithms and Stochastic Approximations, Springer-Verlag, Berlin, 1990.
-
(1987)
Algorithmes Adaptatifs et Approximations Stochastiques
-
-
Benveniste, A.1
Métivier, M.2
Priouret, P.3
-
4
-
-
0020498889
-
Stochastic quasigradient methods and their application to system optimization
-
Y. Ermoliev, Stochastic quasigradient methods and their application to system optimization, Stochastics, 9 (1983), pp. 1-36.
-
(1983)
Stochastics
, vol.9
, pp. 1-36
-
-
Ermoliev, Y.1
-
5
-
-
30244575435
-
Nonstationary stochastic programming problems
-
A. Gaivoronski, Nonstationary stochastic programming problems, Kybernetika, 4 (1978), pp. 89-92.
-
(1978)
Kybernetika
, vol.4
, pp. 89-92
-
-
Gaivoronski, A.1
-
6
-
-
84871576447
-
Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, I: A generic algorithmic framework
-
S. Ghadimi and G. Lan, Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, I: A generic algorithmic framework, SIAM J. Optim., 22 (2012), pp. 1469-1492.
-
(2012)
SIAM J. Optim.
, vol.22
, pp. 1469-1492
-
-
Ghadimi, S.1
Lan, G.2
-
7
-
-
77956508892
-
Accelerated gradient methods for stochastic optimization and online learning
-
C. Hu, J. T. Kwok, and W. Pan, Accelerated gradient methods for stochastic optimization and online learning, in Advances in Neural Information Processing Systems, 2009, pp. 781-789.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 781-789
-
-
Hu, C.1
Kwok, J.T.2
Pan, W.3
-
8
-
-
76749122715
-
-
manuscript, Georgia Institute of Technology, Atlanta, GA
-
A. Juditsky and A. S. Nemirovski, Large deviations of vector-valued martingales in 2-smooth normed spaces, manuscript, Georgia Institute of Technology, Atlanta, GA, 2008. Available online at www2.isye.gatech.edu/ ~nemirovs/LargeDevSubmitted.pdf.
-
(2008)
Large Deviations of Vector-valued Martingales in 2-smooth Normed Spaces
-
-
Juditsky, A.1
Nemirovski, A.S.2
-
10
-
-
0036013019
-
The sample average approximation method for stochastic discrete optimization
-
A. J. Kleywegt, A. Shapiro, and T. Homem-de-Mello, The sample average approximation method for stochastic discrete optimization, SIAM J. Optim., 12 (2002), pp. 479-502.
-
(2002)
SIAM J. Optim.
, vol.12
, pp. 479-502
-
-
Kleywegt, A.J.1
Shapiro, A.2
Homem-De-Mello, T.3
-
11
-
-
33750329737
-
Stochastic approximation and recursive algorithms and applications
-
Springer-Verlag, New York
-
H. J. Kushner and G. Yin, Stochastic Approximation and Recursive Algorithms and Applications, Appl. Math. (N.Y.) 35, Springer-Verlag, New York, 2003.
-
(2003)
Appl. Math. (N.Y.)
, pp. 35
-
-
Kushner, H.J.1
Yin, G.2
-
12
-
-
84862273593
-
An optimal method for stochastic composite optimization
-
G. Lan, An optimal method for stochastic composite optimization, Math. Program., 133 (2012), pp. 365-397.
-
(2012)
Math. Program.
, vol.133
, pp. 365-397
-
-
Lan, G.1
-
13
-
-
84865639277
-
Validation analysis of mirror descent stochastic approximation method
-
G. Lan, A. S. Nemirovski, and A. Shapiro, Validation analysis of mirror descent stochastic approximation method, Math. Program., 134 (2012), pp. 425-458.
-
(2012)
Math. Program.
, vol.134
, pp. 425-458
-
-
Lan, G.1
Nemirovski, A.S.2
Shapiro, A.3
-
14
-
-
84864953191
-
Manifold identification in dual averaging for regularized stochastic online learning
-
S. Lee and S. Wright, Manifold identification in dual averaging for regularized stochastic online learning, J. Mach. Learn. Res., 13 (2012), pp. 1705-1744.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 1705-1744
-
-
Lee, S.1
Wright, S.2
-
15
-
-
84864921955
-
-
manuscript, Carnegie Mellon University, Pittsburgh, PA
-
Q. Lin, X. Chen, and J. Peña, A Sparsity Preserving Stochastic Gradient Method for Composite Optimization, manuscript, Carnegie Mellon University, Pittsburgh, PA, 2011.
-
(2011)
A Sparsity Preserving Stochastic Gradient Method for Composite Optimization
-
-
Lin, Q.1
Chen, X.2
Peña, J.3
-
16
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation approach to stochastic programming, SIAM J. Optim., 19 (2009), pp. 1574-1609.
-
(2009)
SIAM J. Optim.
, vol.19
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
21
-
-
0000828406
-
New stochastic approximation type procedures
-
B. T. Polyak, New stochastic approximation type procedures, Avtomat. i Telemekh., 7 (1990), pp. 98-107.
-
(1990)
Avtomat. I Telemekh.
, vol.7
, pp. 98-107
-
-
Polyak, B.T.1
-
22
-
-
0026899240
-
Acceleration of stochastic approximation by averaging
-
B. T. Polyak and A. B. Juditsky, Acceleration of stochastic approximation by averaging, SIAM J. Control Optim., 30 (1992), pp. 838-855.
-
(1992)
SIAM J. Control Optim.
, vol.30
, pp. 838-855
-
-
Polyak, B.T.1
Juditsky, A.B.2
-
23
-
-
0000016172
-
A stochastic approximation method
-
H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statistics, 22 (1951), pp. 400-407.
-
(1951)
Ann. Math. Statistics
, vol.22
, pp. 400-407
-
-
Robbins, H.1
Monro, S.2
-
24
-
-
0022693667
-
A method of aggregate stochastic subgradients with on-line stepsize rules for convex stochastic programming problems
-
A. Ruszczyński and W. Syski, A method of aggregate stochastic subgradients with on-line stepsize rules for convex stochastic programming problems, Math. Programming Stud., 28 (1986), pp. 113-131.
-
(1986)
Math. Programming Stud.
, vol.28
, pp. 113-131
-
-
Ruszczyński, A.1
Syski, W.2
-
25
-
-
77950512601
-
Monte carlo sampling methods
-
A. Ruszczyński and A. Shapiro, eds., Elsevier, Amsterdam
-
A. Shapiro, Monte Carlo sampling methods, in Stochastic Programming, A. Ruszczyński and A. Shapiro, eds., Elsevier, Amsterdam, 2003, pp. 353-425.
-
(2003)
Stochastic Programming
, pp. 353-425
-
-
Shapiro, A.1
-
26
-
-
33744740175
-
Online learning algorithms
-
S. Smale and Y. Yao, Online learning algorithms, Found. Comput. Math, 6 (2005), pp. 145-170.
-
(2005)
Found. Comput. Math
, vol.6
, pp. 145-170
-
-
Smale, S.1
Yao, Y.2
-
27
-
-
0013025914
-
-
John Wiley & Sons, Hoboken, NJ
-
J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, John Wiley & Sons, Hoboken, NJ, 2003.
-
(2003)
Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control
-
-
Spall, J.C.1
-
28
-
-
78649396336
-
Dual averaging methods for regularized stochastic learning and online optimization
-
L. Xiao, Dual averaging methods for regularized stochastic learning and online optimization, J. Mach. Learn. Res., 11 (2010), pp. 2543-2596.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2543-2596
-
-
Xiao, L.1
|