메뉴 건너뛰기




Volumn 23, Issue 4, 2013, Pages 2061-2089

Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: Shrinking procedures and optimal algorithms

Author keywords

Complexity; Convex optimization; Large deviation; Optimal method; Stochastic approximation; Strong convexity

Indexed keywords

COMPLEXITY; LARGE DEVIATIONS; OPTIMAL METHODS; STOCHASTIC APPROXIMATIONS; STRONG CONVEXITIES;

EID: 84892856128     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/110848876     Document Type: Article
Times cited : (210)

References (29)
  • 1
    • 24044549330 scopus 로고    scopus 로고
    • Interior projection-like methods for monotone variational inequalities
    • A. Auslender and M. Teboulle, Interior projection-like methods for monotone variational inequalities, Math. Program., 104 (2005), pp. 39-68.
    • (2005) Math. Program. , vol.104 , pp. 39-68
    • Auslender, A.1    Teboulle, M.2
  • 2
    • 33747151859 scopus 로고    scopus 로고
    • Interior gradient and proximal methods for convex and conic optimization
    • A. Auslender and M. Teboulle, Interior gradient and proximal methods for convex and conic optimization, SIAM J. Optim., 16 (2006), pp. 697-725.
    • (2006) SIAM J. Optim. , vol.16 , pp. 697-725
    • Auslender, A.1    Teboulle, M.2
  • 4
    • 0020498889 scopus 로고
    • Stochastic quasigradient methods and their application to system optimization
    • Y. Ermoliev, Stochastic quasigradient methods and their application to system optimization, Stochastics, 9 (1983), pp. 1-36.
    • (1983) Stochastics , vol.9 , pp. 1-36
    • Ermoliev, Y.1
  • 5
    • 30244575435 scopus 로고
    • Nonstationary stochastic programming problems
    • A. Gaivoronski, Nonstationary stochastic programming problems, Kybernetika, 4 (1978), pp. 89-92.
    • (1978) Kybernetika , vol.4 , pp. 89-92
    • Gaivoronski, A.1
  • 6
    • 84871576447 scopus 로고    scopus 로고
    • Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, I: A generic algorithmic framework
    • S. Ghadimi and G. Lan, Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, I: A generic algorithmic framework, SIAM J. Optim., 22 (2012), pp. 1469-1492.
    • (2012) SIAM J. Optim. , vol.22 , pp. 1469-1492
    • Ghadimi, S.1    Lan, G.2
  • 7
    • 77956508892 scopus 로고    scopus 로고
    • Accelerated gradient methods for stochastic optimization and online learning
    • C. Hu, J. T. Kwok, and W. Pan, Accelerated gradient methods for stochastic optimization and online learning, in Advances in Neural Information Processing Systems, 2009, pp. 781-789.
    • (2009) Advances in Neural Information Processing Systems , pp. 781-789
    • Hu, C.1    Kwok, J.T.2    Pan, W.3
  • 10
    • 0036013019 scopus 로고    scopus 로고
    • The sample average approximation method for stochastic discrete optimization
    • A. J. Kleywegt, A. Shapiro, and T. Homem-de-Mello, The sample average approximation method for stochastic discrete optimization, SIAM J. Optim., 12 (2002), pp. 479-502.
    • (2002) SIAM J. Optim. , vol.12 , pp. 479-502
    • Kleywegt, A.J.1    Shapiro, A.2    Homem-De-Mello, T.3
  • 11
    • 33750329737 scopus 로고    scopus 로고
    • Stochastic approximation and recursive algorithms and applications
    • Springer-Verlag, New York
    • H. J. Kushner and G. Yin, Stochastic Approximation and Recursive Algorithms and Applications, Appl. Math. (N.Y.) 35, Springer-Verlag, New York, 2003.
    • (2003) Appl. Math. (N.Y.) , pp. 35
    • Kushner, H.J.1    Yin, G.2
  • 12
    • 84862273593 scopus 로고    scopus 로고
    • An optimal method for stochastic composite optimization
    • G. Lan, An optimal method for stochastic composite optimization, Math. Program., 133 (2012), pp. 365-397.
    • (2012) Math. Program. , vol.133 , pp. 365-397
    • Lan, G.1
  • 13
    • 84865639277 scopus 로고    scopus 로고
    • Validation analysis of mirror descent stochastic approximation method
    • G. Lan, A. S. Nemirovski, and A. Shapiro, Validation analysis of mirror descent stochastic approximation method, Math. Program., 134 (2012), pp. 425-458.
    • (2012) Math. Program. , vol.134 , pp. 425-458
    • Lan, G.1    Nemirovski, A.S.2    Shapiro, A.3
  • 14
    • 84864953191 scopus 로고    scopus 로고
    • Manifold identification in dual averaging for regularized stochastic online learning
    • S. Lee and S. Wright, Manifold identification in dual averaging for regularized stochastic online learning, J. Mach. Learn. Res., 13 (2012), pp. 1705-1744.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 1705-1744
    • Lee, S.1    Wright, S.2
  • 16
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation approach to stochastic programming, SIAM J. Optim., 19 (2009), pp. 1574-1609.
    • (2009) SIAM J. Optim. , vol.19 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 21
    • 0000828406 scopus 로고
    • New stochastic approximation type procedures
    • B. T. Polyak, New stochastic approximation type procedures, Avtomat. i Telemekh., 7 (1990), pp. 98-107.
    • (1990) Avtomat. I Telemekh. , vol.7 , pp. 98-107
    • Polyak, B.T.1
  • 22
    • 0026899240 scopus 로고
    • Acceleration of stochastic approximation by averaging
    • B. T. Polyak and A. B. Juditsky, Acceleration of stochastic approximation by averaging, SIAM J. Control Optim., 30 (1992), pp. 838-855.
    • (1992) SIAM J. Control Optim. , vol.30 , pp. 838-855
    • Polyak, B.T.1    Juditsky, A.B.2
  • 23
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Statistics, 22 (1951), pp. 400-407.
    • (1951) Ann. Math. Statistics , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 24
    • 0022693667 scopus 로고
    • A method of aggregate stochastic subgradients with on-line stepsize rules for convex stochastic programming problems
    • A. Ruszczyński and W. Syski, A method of aggregate stochastic subgradients with on-line stepsize rules for convex stochastic programming problems, Math. Programming Stud., 28 (1986), pp. 113-131.
    • (1986) Math. Programming Stud. , vol.28 , pp. 113-131
    • Ruszczyński, A.1    Syski, W.2
  • 25
    • 77950512601 scopus 로고    scopus 로고
    • Monte carlo sampling methods
    • A. Ruszczyński and A. Shapiro, eds., Elsevier, Amsterdam
    • A. Shapiro, Monte Carlo sampling methods, in Stochastic Programming, A. Ruszczyński and A. Shapiro, eds., Elsevier, Amsterdam, 2003, pp. 353-425.
    • (2003) Stochastic Programming , pp. 353-425
    • Shapiro, A.1
  • 26
    • 33744740175 scopus 로고    scopus 로고
    • Online learning algorithms
    • S. Smale and Y. Yao, Online learning algorithms, Found. Comput. Math, 6 (2005), pp. 145-170.
    • (2005) Found. Comput. Math , vol.6 , pp. 145-170
    • Smale, S.1    Yao, Y.2
  • 28
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • L. Xiao, Dual averaging methods for regularized stochastic learning and online optimization, J. Mach. Learn. Res., 11 (2010), pp. 2543-2596.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2543-2596
    • Xiao, L.1
  • 29


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.