-
1
-
-
85042131716
-
Switching convolutional neural network for crowd counting
-
1, 2, 3, 5, 7
-
D. Babu Sam, S. Surya, and R. Venkatesh Babu. Switching convolutional neural network for crowd counting. In CVPR, 2017. 1, 2, 3, 5, 7
-
(2017)
CVPR
-
-
Babu Sam, D.1
Surya, S.2
Venkatesh Babu, R.3
-
3
-
-
51949104316
-
Privacy preserving crowd monitoring: Counting people without people models or tracking
-
1
-
A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy preserving crowd monitoring: Counting people without people models or tracking. In CVPR, 2008. 1
-
(2008)
CVPR
-
-
Chan, A.B.1
Liang, Z.-S.J.2
Vasconcelos, N.3
-
4
-
-
77953177412
-
Bayesian poisson regression for crowd counting
-
2
-
A. B. Chan and N. Vasconcelos. Bayesian poisson regression for crowd counting. In ICCV, 2009. 2
-
(2009)
ICCV
-
-
Chan, A.B.1
Vasconcelos, N.2
-
5
-
-
84859031876
-
Counting people with lowlevel features and Bayesian regression
-
2
-
A. B. Chan and N. Vasconcelos. Counting people with lowlevel features and Bayesian regression. IEEE Transactions on Image Processing, 21 (4): 2160-2177, 2012. 2
-
(2012)
IEEE Transactions on Image Processing
, vol.21
, Issue.4
, pp. 2160-2177
-
-
Chan, A.B.1
Vasconcelos, N.2
-
6
-
-
84898455547
-
Feature mining for localised crowd counting
-
2
-
K. Chen, C. C. Loy, S. Gong, and T. Xiang. Feature mining for localised crowd counting. In BMVC, 2012. 2
-
(2012)
BMVC
-
-
Chen, K.1
Loy, C.C.2
Gong, S.3
Xiang, T.4
-
7
-
-
84863035221
-
Ranking measures and loss functions in learning to rank
-
3
-
W. Chen, T.-Y. Liu, Y. Lan, Z.-M. Ma, and H. Li. Ranking measures and loss functions in learning to rank. In NIPS, 2009. 3
-
(2009)
NIPS
-
-
Chen, W.1
Liu, T.-Y.2
Lan, Y.3
Ma, Z.-M.4
Li, H.5
-
8
-
-
24644436425
-
Learning a similarity metric discriminatively, with application to face verification
-
6
-
S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. In CVPR, 2005. 6
-
(2005)
CVPR
-
-
Chopra, S.1
Hadsell, R.2
LeCun, Y.3
-
9
-
-
70450161243
-
Flow mosaicking: Real-time pedestrian counting without scene-specific learning
-
IEEE. 2
-
Y. Cong, H. Gong, S.-C. Zhu, and Y. Tang. Flow mosaicking: Real-time pedestrian counting without scene-specific learning. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1093-1100. IEEE, 2009. 2
-
(2009)
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
, pp. 1093-1100
-
-
Cong, Y.1
Gong, H.2
Zhu, S.-C.3
Tang, Y.4
-
10
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
2, 6, 7
-
C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015. 2, 6, 7
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
11
-
-
84857435937
-
Pedestrian detection: An evaluation of the state of the art
-
2
-
P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. IEEE trans. on pattern analysis and machine intelligence, 34 (4): 743-761, 2012. 2
-
(2012)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.34
, Issue.4
, pp. 743-761
-
-
Dollar, P.1
Wojek, C.2
Schiele, B.3
Perona, P.4
-
12
-
-
84929864188
-
Fast crowd density estimation with convolutional neural networks
-
2, 3
-
M. Fu, P. Xu, X. Li, Q. Liu, M. Ye, and C. Zhu. Fast crowd density estimation with convolutional neural networks. Engineering Applications of Artificial Intelligence, 43: 81-88, 2015. 2, 3
-
(2015)
Engineering Applications of Artificial Intelligence
, vol.43
, pp. 81-88
-
-
Fu, M.1
Xu, P.2
Li, X.3
Liu, Q.4
Ye, M.5
Zhu, C.6
-
13
-
-
84887356947
-
Multi-source multi-scale counting in extremely dense crowd images
-
6, 7
-
H. Idrees, I. Saleemi, C. Seibert, and M. Shah. Multi-source multi-scale counting in extremely dense crowd images. In CVPR, 2013. 6, 7
-
(2013)
CVPR
-
-
Idrees, H.1
Saleemi, I.2
Seibert, C.3
Shah, M.4
-
14
-
-
84913555165
-
-
6
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. ArXiv preprint arXiv: 1408. 5093, 2014. 6
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
16
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
2
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012. 2
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
17
-
-
85041897195
-
Colorization as a proxy task for visual understanding
-
2
-
G. Larsson, M. Maire, and G. Shakhnarovich. Colorization as a proxy task for visual understanding. In CVPR, 2017. 2
-
(2017)
CVPR
-
-
Larsson, G.1
Maire, M.2
Shakhnarovich, G.3
-
18
-
-
85162384490
-
Learning to count objects in images
-
1, 2
-
V. Lempitsky and A. Zisserman. Learning to count objects in images. In NIPS, pages 1324-1332, 2010. 1, 2
-
(2010)
NIPS
, pp. 1324-1332
-
-
Lempitsky, V.1
Zisserman, A.2
-
19
-
-
77957965857
-
Estimating the number of people in crowded scenes by mid based foreground segmentation and head-shoulder detection
-
2
-
M. Li, Z. Zhang, K. Huang, and T. Tan. Estimating the number of people in crowded scenes by mid based foreground segmentation and head-shoulder detection. In International Conference on Pattern Recognition. IEEE, 2008. 2
-
(2008)
International Conference on Pattern Recognition. IEEE
-
-
Li, M.1
Zhang, Z.2
Huang, K.3
Tan, T.4
-
20
-
-
85041919799
-
Rankiqa: Learning from rankings for no-reference image quality assessment
-
2, 3, 6, 7
-
X. Liu, J. van de Weijer, and A. D. Bagdanov. Rankiqa: Learning from rankings for no-reference image quality assessment. In ICCV, 2017. 2, 3, 6, 7
-
(2017)
ICCV
-
-
Liu, X.1
De Van, W.J.2
Bagdanov, A.D.3
-
21
-
-
84916619600
-
Crowd counting and profiling: Methodology and evaluation
-
Springer. 2
-
C. C. Loy, K. Chen, S. Gong, and T. Xiang. Crowd counting and profiling: Methodology and evaluation. In Modeling, Simulation and Visual Analysis of Crowds, pages 347-382. Springer, 2013. 2
-
(2013)
Modeling, Simulation and Visual Analysis of Crowds
, pp. 347-382
-
-
Loy, C.C.1
Chen, K.2
Gong, S.3
Xiang, T.4
-
24
-
-
85041930018
-
Representation learning by learning to count
-
2, 3, 6, 7
-
M. Noroozi, H. Pirsiavash, and P. Favaro. Representation learning by learning to count. In ICCV, 2017. 2, 3, 6, 7
-
(2017)
ICCV
-
-
Noroozi, M.1
Pirsiavash, H.2
Favaro, P.3
-
25
-
-
85021624882
-
Towards perspective-free object counting with deep learning
-
Springer. 1, 3, 5, 7
-
D. Onoro-Rubio and R. J. López-Sastre. Towards perspective-free object counting with deep learning. In ECCV. Springer, 2016. 1, 3, 5, 7
-
(2016)
ECCV
-
-
Onoro-Rubio, D.1
López-Sastre, R.J.2
-
26
-
-
84986294165
-
Context encoders: Feature learning by inpainting
-
2, 6, 7
-
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning by inpainting. In CVPR, 2016. 2, 6, 7
-
(2016)
CVPR
-
-
Pathak, D.1
Krahenbuhl, P.2
Donahue, J.3
Darrell, T.4
Efros, A.A.5
-
29
-
-
85044161157
-
Crowd counting via weighted vlad on dense attribute feature maps
-
1
-
B. Sheng, C. Shen, G. Lin, J. Li, W. Yang, and C. Sun. Crowd counting via weighted vlad on dense attribute feature maps. IEEE Transactions on Circuits and Systems for Video Technology, 2016. 1
-
(2016)
IEEE Transactions on Circuits and Systems for Video Technology
-
-
Sheng, B.1
Shen, C.2
Lin, G.3
Li, J.4
Yang, W.5
Sun, C.6
-
30
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
4
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. ICLR, 2015. 4
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
31
-
-
85041900822
-
Generating high-quality crowd density maps using contextual pyramid cnns
-
2, 3, 5, 7, 8
-
V. A. Sindagi and V. M. Patel. Generating high-quality crowd density maps using contextual pyramid cnns. In ICCV, 2017. 2, 3, 5, 7, 8
-
(2017)
ICCV
-
-
Sindagi, V.A.1
Patel, V.M.2
-
32
-
-
85046411945
-
A survey of recent advances in cnn-based single image crowd counting and density estimation
-
2
-
V. A. Sindagi and V. M. Patel. A survey of recent advances in cnn-based single image crowd counting and density estimation. Pattern Recognition Letters, 2017. 2
-
(2017)
Pattern Recognition Letters
-
-
Sindagi, V.A.1
Patel, V.M.2
-
33
-
-
85021647719
-
Learning to count with cnn boosting
-
Springer. 7
-
E. Walach and L. Wolf. Learning to count with cnn boosting. In ECCV. Springer, 2016. 7
-
(2016)
ECCV
-
-
Walach, E.1
Wolf, L.2
-
34
-
-
84962920483
-
Deep people counting in extremely dense crowds
-
2
-
C. Wang, H. Zhang, L. Yang, S. Liu, and X. Cao. Deep people counting in extremely dense crowds. In Proceedings of ACM int. conf. on Multimedia. ACM, 2015. 2
-
(2015)
Proceedings of ACM Int. Conf. on Multimedia. ACM
-
-
Wang, C.1
Zhang, H.2
Yang, L.3
Liu, S.4
Cao, X.5
-
35
-
-
84959214343
-
Cross-scene crowd counting via deep convolutional neural networks
-
2, 3, 7
-
C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd counting via deep convolutional neural networks. In CVPR, 2015. 2, 3, 7
-
(2015)
CVPR
-
-
Zhang, C.1
Li, H.2
Wang, X.3
Yang, X.4
-
36
-
-
84990021580
-
Colorful image colorization
-
2, 6, 7
-
R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In ECCV, 2016. 2, 6, 7
-
(2016)
ECCV
-
-
Zhang, R.1
Isola, P.2
Efros, A.A.3
-
37
-
-
84986278309
-
Singleimage crowd counting via multi-column convolutional neural network
-
1, 2, 3, 5, 6, 7, 8
-
Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Singleimage crowd counting via multi-column convolutional neural network. In CVPR, 2016. 1, 2, 3, 5, 6, 7, 8
-
(2016)
CVPR
-
-
Zhang, Y.1
Zhou, D.2
Chen, S.3
Gao, S.4
Ma, Y.5
|