-
2
-
-
31844446958
-
Learning to rank using gradient descent
-
New York, NY, USA ACM
-
C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to rank using gradient descent. In ICML '05: Proceedings of the 22nd International Conference on Machine learning, pages 89-96, New York, NY, USA, 2005. ACM.
-
(2005)
ICML '05: Proceedings of the 22nd International Conference on Machine Learning
, pp. 89-96
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
3
-
-
34547987951
-
Learning to rank: From pairwise approach to listwise approach
-
New York, NY, USA ACM
-
Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise approach. In ICML '07: Proceedings of the 24th International Conference on Machine learning, pages 129-136, New York, NY, USA, 2007. ACM.
-
(2007)
ICML '07: Proceedings of the 24th International Conference on Machine Learning
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.-Y.3
Tsai, M.-F.4
Li, H.5
-
4
-
-
84863375355
-
Essential loss: Bridge the gap between ranking measures and loss functions in learning to rank
-
W. Chen, T.-Y. Liu, Y. Lan, Z. Ma, and H. Li. Essential loss: Bridge the gap between ranking measures and loss functions in learning to rank. Technical report, Microsoft Research, MSR-TR-2009-141, 2009.
-
(2009)
Technical Report, Microsoft Research, MSR-TR-2009-141
-
-
Chen, W.1
Liu, T.-Y.2
Lan, Y.3
Ma, Z.4
Li, H.5
-
5
-
-
55349114379
-
Statistical analysis of bayes optimal subset ranking
-
D. Cossock and T. Zhang. Statistical analysis of bayes optimal subset ranking. Information Theory, 54:5140-5154, 2008.
-
(2008)
Information Theory
, vol.54
, pp. 5140-5154
-
-
Cossock, D.1
Zhang, T.2
-
6
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4:933-969, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
7
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
Cambridge, MA MIT
-
R. Herbrich, K. Obermayer, and T. Graepel. Large margin rank boundaries for ordinal regression. In Advances in Large Margin Classifiers, pages 115-132, Cambridge, MA, 1999. MIT.
-
(1999)
Advances in Large Margin Classifiers
, pp. 115-132
-
-
Herbrich, R.1
Obermayer, K.2
Graepel, T.3
-
10
-
-
85162006799
-
Mcrank: Learning to rank using multiple classification and gradient boosting
-
Cambridge, MA MIT
-
P. Li, C. Burges, and Q. Wu. Mcrank: Learning to rank using multiple classification and gradient boosting. In NIPS '07: Advances in Neural Information Processing Systems 20, pages 897-904, Cambridge, MA, 2008. MIT.
-
(2008)
NIPS '07: Advances in Neural Information Processing Systems
, vol.20
, pp. 897-904
-
-
Li, P.1
Burges, C.2
Wu, Q.3
-
11
-
-
45449095122
-
Letor: Benchmark dataset for research on learning to rank for information retrieval
-
San Francisco Morgan Kaufmann
-
T.-Y. Liu, J. Xu, T. Qin, W.-Y. Xiong, and H. Li. Letor: Benchmark dataset for research on learning to rank for information retrieval. In SIGIR '07 Workshop, San Francisco, 2007. Morgan Kaufmann.
-
(2007)
SIGIR '07 Workshop
-
-
Liu, T.-Y.1
Xu, J.2
Qin, T.3
Xiong, W.-Y.4
Li, H.5
-
13
-
-
39649119873
-
Query-level loss functions for information retrieval
-
T. Qin, X.-D. Zhang, M.-F. Tsai, D.-S. Wang, T.-Y. Liu, and H. Li. Query-level loss functions for information retrieval. Information Processing and Management, 44(2):838-855, 2008.
-
(2008)
Information Processing and Management
, vol.44
, Issue.2
, pp. 838-855
-
-
Qin, T.1
Zhang, X.-D.2
Tsai, M.-F.3
Wang, D.-S.4
Liu, T.-Y.5
Li, H.6
-
14
-
-
42549161120
-
Softrank: Optimizing non-smooth rank metrics
-
Palo Alto, California, USA ACM
-
M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: optimizing non-smooth rank metrics. In Proceedings of the International Conference on Web search and web data mining, pages 77-86, Palo Alto, California, USA, 2008. ACM.
-
(2008)
Proceedings of the International Conference on Web Search and Web Data Mining
, pp. 77-86
-
-
Taylor, M.1
Guiver, J.2
Robertson, S.3
Minka, T.4
-
15
-
-
36448961557
-
Frank: A ranking method with fidelity loss
-
Amsterdam, The Netherlands ACM
-
M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma. Frank: a ranking method with fidelity loss. In SIGIR '07: Proceedings of the 30th annual ACM SIGIR conference, pages 383-390, Amsterdam, The Netherlands, 2007. ACM.
-
(2007)
SIGIR '07: Proceedings of the 30th Annual ACM SIGIR Conference
, pp. 383-390
-
-
Tsai, M.-F.1
Liu, T.-Y.2
Qin, T.3
Chen, H.-H.4
Ma, W.-Y.5
-
16
-
-
56449094442
-
Listwise approach to learning to rank - Theory and algorithm
-
Omnipress
-
F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to rank - theory and algorithm. In ICML '08: Proceedings of the 25th International Conference on Machine learning, pages 1192-1199. Omnipress, 2008.
-
(2008)
ICML '08: Proceedings of the 25th International Conference on Machine Learning
, pp. 1192-1199
-
-
Xia, F.1
Liu, T.-Y.2
Wang, J.3
Zhang, W.4
Li, H.5
-
18
-
-
36448983903
-
A support vector method for optimizing average precision
-
New York, NY, USA ACM
-
Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In SIGIR '07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pages 271-278, New York, NY, USA, 2007. ACM.
-
(2007)
SIGIR '07: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 271-278
-
-
Yue, Y.1
Finley, T.2
Radlinski, F.3
Joachims, T.4
-
19
-
-
85161963897
-
A general boosting method and its application to learning ranking functions for web search
-
MIT, Cambridge, MA
-
Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and G. Sun. A general boosting method and its application to learning ranking functions for web search. In NIPS '07: Advances in Neural Information Processing Systems 20, pages 1697-1704. MIT, Cambridge, MA, 2008.
-
(2008)
NIPS '07: Advances in Neural Information Processing Systems
, vol.20
, pp. 1697-1704
-
-
Zheng, Z.1
Zha, H.2
Zhang, T.3
Chapelle, O.4
Chen, K.5
Sun, G.6
|