-
1
-
-
84966560351
-
Microbiome therapeutics — advances and challenges
-
COI: 1:CAS:528:DC%2BC28Xnslams70%3D
-
Mimee, M., Citorik, R. J. & Lu, T. K. Microbiome therapeutics — advances and challenges. Adv. Drug Deliv. Rev. 105, 44–54 (2016).
-
(2016)
Adv. Drug Deliv. Rev.
, vol.105
, pp. 44-54
-
-
Mimee, M.1
Citorik, R.J.2
Lu, T.K.3
-
2
-
-
85028540105
-
The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens
-
COI: 1:CAS:528:DC%2BC2sXhsVShu7nN
-
Kim, S., Covington, A. & Pamer, E. G. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 279, 90–105 (2017).
-
(2017)
Immunol. Rev.
, vol.279
, pp. 90-105
-
-
Kim, S.1
Covington, A.2
Pamer, E.G.3
-
3
-
-
85030150098
-
Emerging trends in “smart probiotics”: functional consideration for the development of novel health and industrial applications
-
El Hage, R., Hernandez-Sanabria, E. & Van de Wiele, T. Emerging trends in “smart probiotics”: functional consideration for the development of novel health and industrial applications. Front. Microbiol. 8, 1889 (2017).
-
(2017)
Front. Microbiol.
, vol.8
, pp. 1889
-
-
El Hage, R.1
Hernandez-Sanabria, E.2
Van de Wiele, T.3
-
4
-
-
85025806668
-
Regulation of inflammation by microbiota interactions with the host
-
COI: 1:CAS:528:DC%2BC2sXhtFyqtL%2FE
-
Blander, J. M., Longman, R. S., Iliev, I. D., Sonnenberg, G. F. & Artis, D. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18, 851–860 (2017).
-
(2017)
Nat. Immunol.
, vol.18
, pp. 851-860
-
-
Blander, J.M.1
Longman, R.S.2
Iliev, I.D.3
Sonnenberg, G.F.4
Artis, D.5
-
5
-
-
84881477044
-
Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
-
COI: 1:CAS:528:DC%2BC3sXhtFShsbfJ
-
Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).
-
(2013)
Nature
, vol.500
, pp. 232-236
-
-
Atarashi, K.1
-
6
-
-
84893370250
-
Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice
-
Faith, J. J., Ahern, P. P., Ridaura, V. K., Cheng, J. & Gordon, J. I. Identifying gut microbe–host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 6, 220ra11 (2014).
-
(2014)
Sci. Transl. Med.
, vol.6
, pp. 220ra11
-
-
Faith, J.J.1
Ahern, P.P.2
Ridaura, V.K.3
Cheng, J.4
Gordon, J.I.5
-
7
-
-
84940077758
-
+ regulatory T cells
-
COI: 1:CAS:528:DC%2BC2MXhsVSlsr3E
-
+ regulatory T cells. Science 349, 993–997 (2015).
-
(2015)
Science
, vol.349
, pp. 993-997
-
-
Sefik, E.1
-
8
-
-
84943639694
-
Th17 cell induction by adhesion of microbes to intestinal epithelial cells
-
COI: 1:CAS:528:DC%2BC2MXhsFKqsb%2FN
-
Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).
-
(2015)
Cell
, vol.163
, pp. 367-380
-
-
Atarashi, K.1
-
9
-
-
85003426944
-
Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice
-
COI: 1:CAS:528:DC%2BC28XhvFelsLrI
-
Tan, T. G. et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc. Natl Acad. Sci. USA 113, E8141–E8150 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. E8141-E8150
-
-
Tan, T.G.1
-
10
-
-
79955121049
-
Microbiota regulates immune defense against respiratory tract influenza A virus infection
-
COI: 1:CAS:528:DC%2BC3MXkslOmtbs%3D
-
Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 5354-5359
-
-
Ichinohe, T.1
-
11
-
-
85044272858
-
Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections
-
COI: 1:CAS:528:DC%2BC1cXmsVegsrg%3D
-
Thackray, L. B. et al. Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell Rep. 22, 3440–3453 (2018).
-
(2018)
Cell Rep.
, vol.22
, pp. 3440-3453
-
-
Thackray, L.B.1
-
12
-
-
84956896266
-
Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy
-
Spranger, S., Sivan, A., Corrales, L. & Gajewski, T. F. Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Adv. Immunol. 130, 75–93 (2016).
-
(2016)
Adv. Immunol.
, vol.130
, pp. 75-93
-
-
Spranger, S.1
Sivan, A.2
Corrales, L.3
Gajewski, T.F.4
-
13
-
-
85018374876
-
The role of the microbiome in cancer development and therapy
-
Bhatt, A. P., Redinbo, M. R. & Bultman, S. J. The role of the microbiome in cancer development and therapy. CA Cancer J. Clin. 67, 326–344 (2017).
-
(2017)
CA Cancer J. Clin.
, vol.67
, pp. 326-344
-
-
Bhatt, A.P.1
Redinbo, M.R.2
Bultman, S.J.3
-
14
-
-
85046048647
-
The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies
-
COI: 1:CAS:528:DC%2BC1cXltFehtLc%3D
-
Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359, 1366–1370 (2018).
-
(2018)
Science
, vol.359
, pp. 1366-1370
-
-
Zitvogel, L.1
Ma, Y.2
Raoult, D.3
Kroemer, G.4
Gajewski, T.F.5
-
15
-
-
84936846381
-
The emerging role of resident memory T cells in protective immunity and inflammatory disease
-
COI: 1:CAS:528:DC%2BC2MXhtFeisrrE
-
Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).
-
(2015)
Nat. Med.
, vol.21
, pp. 688-697
-
-
Park, C.O.1
Kupper, T.S.2
-
16
-
-
85032492045
-
H 1 cell induction and inflammation
-
COI: 1:CAS:528:DC%2BC2sXhs1Kns7zP
-
H 1 cell induction and inflammation. Science 358, 359–365 (2017).
-
(2017)
Science
, vol.358
, pp. 359-365
-
-
Atarashi, K.1
-
17
-
-
56449097442
-
+ dendritic cells in cytotoxic T cell immunity
-
COI: 1:CAS:528:DC%2BD1cXhtlGhu7fF
-
+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).
-
(2008)
Science
, vol.322
, pp. 1097-1100
-
-
Hildner, K.1
-
18
-
-
84961726923
-
Crucial roles of XCR1-expressing dendritic cells and the XCR1–XCL1 chemokine axis in intestinal immune homeostasis
-
COI: 1:CAS:528:DC%2BC28XkvVCiu74%3D
-
Ohta, T. et al. Crucial roles of XCR1-expressing dendritic cells and the XCR1–XCL1 chemokine axis in intestinal immune homeostasis. Sci. Rep. 6, 23505 (2016).
-
(2016)
Sci. Rep.
, vol.6
-
-
Ohta, T.1
-
19
-
-
85020920341
-
Diversity and functions of intestinal mononuclear phagocytes
-
COI: 1:CAS:528:DC%2BC2sXlslyhu7k%3D
-
Joeris, T., Müller-Luda, K., Agace, W. W. & Mowat, A. M. Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol. 10, 845–864 (2017).
-
(2017)
Mucosal Immunol.
, vol.10
, pp. 845-864
-
-
Joeris, T.1
Müller-Luda, K.2
Agace, W.W.3
Mowat, A.M.4
-
20
-
-
84883172356
-
Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens
-
COI: 1:CAS:528:DC%2BC3sXht1WhsLjP
-
Satpathy, A. T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14, 937–948 (2013).
-
(2013)
Nat. Immunol.
, vol.14
, pp. 937-948
-
-
Satpathy, A.T.1
-
21
-
-
84900474436
-
+ T cells with enhanced protective function
-
COI: 1:CAS:528:DC%2BC2cXntlentLs%3D
-
+ T cells with enhanced protective function. Immunity 40, 747–757 (2014).
-
(2014)
Immunity
, vol.40
, pp. 747-757
-
-
Sheridan, B.S.1
-
22
-
-
0037083612
-
Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses
-
COI: 1:CAS:528:DC%2BD38Xht1Cgtbk%3D
-
Foulds, K. E. et al. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J. Immunol. 168, 1528–1532 (2002).
-
(2002)
J. Immunol.
, vol.168
, pp. 1528-1532
-
-
Foulds, K.E.1
-
23
-
-
84990849572
-
Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy
-
COI: 1:CAS:528:DC%2BC28XhsFGrurbJ
-
Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404 (2016).
-
(2016)
Cell
, vol.167
, pp. 397-404
-
-
Gao, J.1
-
24
-
-
85028060533
-
Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade
-
COI: 1:CAS:528:DC%2BC2sXhtlarsbzI
-
Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133 (2017).
-
(2017)
Cell
, vol.170
, pp. 1120-1133
-
-
Wei, S.C.1
-
25
-
-
0034100678
-
The envelope protein of an endogenous murine retrovirus is a tumor-associated T-cell antigen for multiple murine tumors
-
COI: 1:CAS:528:DC%2BD3cXisVeiuro%3D
-
Yang, J. C. & Perry-Lalley, D. The envelope protein of an endogenous murine retrovirus is a tumor-associated T-cell antigen for multiple murine tumors. J. Immunother. 23, 177–183 (2000).
-
(2000)
J. Immunother.
, vol.23
, pp. 177-183
-
-
Yang, J.C.1
Perry-Lalley, D.2
-
26
-
-
84964313375
-
Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade
-
COI: 1:CAS:528:DC%2BC2cXhtFWgtr3P
-
Cooper, Z. A. et al. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol. Res. 2, 643–654 (2014).
-
(2014)
Cancer Immunol. Res.
, vol.2
, pp. 643-654
-
-
Cooper, Z.A.1
-
27
-
-
65649147543
-
V600E cooperates with Pten loss to induce metastatic melanoma
-
COI: 1:CAS:528:DC%2BD1MXjtFCisbY%3D
-
V600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).
-
(2009)
Nat. Genet.
, vol.41
, pp. 544-552
-
-
Dankort, D.1
-
28
-
-
84957565779
-
Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis
-
COI: 1:CAS:528:DC%2BC28XitVOlur0%3D
-
Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).
-
(2016)
Nat. Commun.
, vol.7
-
-
Dubin, K.1
-
29
-
-
85033576428
-
Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors
-
COI: 1:CAS:528:DC%2BC1cXjslOrsw%3D%3D
-
Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).
-
(2018)
Science
, vol.359
, pp. 91-97
-
-
Routy, B.1
-
30
-
-
85033587326
-
Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients
-
COI: 1:CAS:528:DC%2BC1cXjslOrsA%3D%3D
-
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
-
(2018)
Science
, vol.359
, pp. 97-103
-
-
Gopalakrishnan, V.1
-
31
-
-
85040119520
-
The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients
-
COI: 1:CAS:528:DC%2BC1cXjslOksg%3D%3D
-
Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).
-
(2018)
Science
, vol.359
, pp. 104-108
-
-
Matson, V.1
-
32
-
-
85031736103
-
Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients
-
COI: 1:CAS:528:DC%2BC2sXhtl2gtLnK
-
Frankel, A. E. et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19, 848–855 (2017).
-
(2017)
Neoplasia
, vol.19
, pp. 848-855
-
-
Frankel, A.E.1
-
33
-
-
54449083567
-
The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria
-
COI: 1:CAS:528:DC%2BD1cXht1alsLvF
-
Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 15064-15069
-
-
Johansson, M.E.1
-
34
-
-
84965141575
-
The gut microbiome of healthy Japanese and its microbial and functional uniqueness
-
COI: 1:CAS:528:DC%2BC28Xht12rsbvP
-
Nishijima, S. et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res 23, 125–133 (2016).
-
(2016)
DNA Res
, vol.23
, pp. 125-133
-
-
Nishijima, S.1
-
35
-
-
85034582678
-
Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior
-
COI: 1:CAS:528:DC%2BC2sXhslejtLrM
-
Miyajima, M. et al. Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nat. Immunol. 18, 1342–1352 (2017).
-
(2017)
Nat. Immunol.
, vol.18
, pp. 1342-1352
-
-
Miyajima, M.1
-
36
-
-
84934889238
-
Targeted metabolomic analysis of head and neck cancer cells using high performance ion chromatography coupled with a Q exactive HF mass spectrometer
-
COI: 1:CAS:528:DC%2BC2MXot1entLk%3D
-
Hu, S. et al. Targeted metabolomic analysis of head and neck cancer cells using high performance ion chromatography coupled with a Q exactive HF mass spectrometer. Anal. Chem. 87, 6371–6379 (2015).
-
(2015)
Anal. Chem.
, vol.87
, pp. 6371-6379
-
-
Hu, S.1
-
37
-
-
85031425773
-
Arl8b is required for lysosomal degradation of maternal proteins in the visceral yolk sac endoderm of mouse embryos
-
COI: 1:CAS:528:DC%2BC1cXmslals7o%3D
-
Oka, M. et al. Arl8b is required for lysosomal degradation of maternal proteins in the visceral yolk sac endoderm of mouse embryos. J. Cell Sci. 130, 3568–3577 (2017).
-
(2017)
J. Cell Sci.
, vol.130
, pp. 3568-3577
-
-
Oka, M.1
-
38
-
-
85030771846
-
Strains, functions and dynamics in the expanded Human Microbiome Project
-
COI: 1:CAS:528:DC%2BC2sXhsFehtrzE, PID: 28953883
-
Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).
-
(2017)
Nature
, vol.550
, pp. 61-66
-
-
Lloyd-Price, J.1
-
39
-
-
84907686349
-
The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease
-
The Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289 (2014).
-
(2014)
Cell Host Microbe
, vol.16
, pp. 276-289
-
-
-
40
-
-
85006106370
-
Linking the human gut microbiome to inflammatory cytokine production capacity
-
COI: 1:CAS:528:DC%2BC28XitFWlsrvF
-
Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1897 (2016).
-
(2016)
Cell
, vol.167
, pp. 1897
-
-
Schirmer, M.1
-
41
-
-
84968901892
-
Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity
-
COI: 1:CAS:528:DC%2BC28Xms1KisL8%3D
-
Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).
-
(2016)
Science
, vol.352
, pp. 565-569
-
-
Zhernakova, A.1
-
42
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
COI: 1:CAS:528:DC%2BC3cXislahsLc%3D
-
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
-
(2010)
Nature
, vol.464
, pp. 59-65
-
-
Qin, J.1
-
43
-
-
84905730165
-
An integrated catalog of reference genes in the human gut microbiome
-
COI: 1:CAS:528:DC%2BC2cXhtFSlsLjP
-
Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 834-841
-
-
Li, J.1
|