-
1
-
-
84883550975
-
The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors
-
et al. et al
-
Cangoz S, Chang YY, Chempakaseril SJ, et al. et al. The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors. J Clin Pharm Ther. 2013;38(5):350–9 doi:10.1111/jcpt.12077
-
(2013)
J Clin Pharm Ther.
, vol.38
, Issue.5
, pp. 350-359
-
-
Cangoz, S.1
Chang, Y.Y.2
Chempakaseril, S.J.3
-
2
-
-
0036937335
-
Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2)
-
et al
-
Van den Heuvel LP, Assink K, Willemsen M, et al. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet. 2002;111(6):544–7 doi:10.1007/s00439-002-0820-5
-
(2002)
Hum Genet.
, vol.111
, Issue.6
, pp. 544-547
-
-
Van den Heuvel, L.P.1
Assink, K.2
Willemsen, M.3
-
3
-
-
75749094398
-
Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target
-
Santer R, Calado J. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin J Am Soc Nephrol. 2010;5(1):133–41 doi:10.2215/CJN.04010609
-
(2010)
Clin J Am Soc Nephrol.
, vol.5
, Issue.1
, pp. 133-141
-
-
Santer, R.1
Calado, J.2
-
4
-
-
84872400230
-
Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus
-
et al
-
Vallon V, Rose M, Gerasimova M, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol. 2013;304(2):F156–67 doi:10.1152/ajprenal.00409.2012
-
(2013)
Am J Physiol Renal Physiol.
, vol.304
, Issue.2
, pp. F156-F167
-
-
Vallon, V.1
Rose, M.2
Gerasimova, M.3
-
5
-
-
84879795546
-
A Phase IIb, randomized, placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes
-
et al
-
Ferrannini E, Seman L, Seewaldt-Becker E, et al. A Phase IIb, randomized, placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes. Diabetes Obes Metab. 2013;15(8):721–8 doi:10.1111/dom.12081
-
(2013)
Diabetes Obes Metab.
, vol.15
, Issue.8
, pp. 721-728
-
-
Ferrannini, E.1
Seman, L.2
Seewaldt-Becker, E.3
-
6
-
-
84918523582
-
Tofogliflozin: a highly selective SGLT2 inhibitor for the treatment of type 2 diabetes
-
et al
-
Rosenwasser RF, Rosenwasser JN, Sutton D, et al. Tofogliflozin: a highly selective SGLT2 inhibitor for the treatment of type 2 diabetes. Drugs Today (Barc). 2014;50(11):739–45 doi:10.1358/dot.2014.50112232267
-
(2014)
Drugs Today (Barc).
, vol.50
, Issue.11
, pp. 739-745
-
-
Rosenwasser, R.F.1
Rosenwasser, J.N.2
Sutton, D.3
-
7
-
-
84898600889
-
Canagliflozin, a sodium glucose co-transporter 2 inhibitor, improves model-based indices of beta cell function in patients with type 2 diabetes
-
Polidori D, Mari A, Ferrannini E. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, improves model-based indices of beta cell function in patients with type 2 diabetes. Diabetologia. 2014;57(5):891–901 doi:10.1007/s00125-014-3196-x
-
(2014)
Diabetologia.
, vol.57
, Issue.5
, pp. 891-901
-
-
Polidori, D.1
Mari, A.2
Ferrannini, E.3
-
8
-
-
84928911112
-
Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents
-
Vivian EM. Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents. Drugs Context. 2014;3:212264. doi:10.7573/dic.212264
-
(2014)
Drugs Context.
, vol.3
, pp. 212264
-
-
Vivian, E.M.1
-
9
-
-
84908066747
-
Update on developments with SGLT2 inhibitors in the management of type 2 diabetes
-
Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014;8:1335–80 doi:10.2147/DDDT.S50773
-
(2014)
Drug Des Devel Ther.
, vol.8
, pp. 1335-1380
-
-
Nauck, M.A.1
-
10
-
-
84928264272
-
Empagliflozin, an SGLT2 inhibitor for the treatment of type 2 diabetes mellitus: A review of the evidence
-
White JR, Jr. Empagliflozin, an SGLT2 inhibitor for the treatment of type 2 diabetes mellitus: A review of the evidence. Ann Pharmacother. 2015; doi:10.1177/1060028015573564
-
(2015)
Ann Pharmacother.
-
-
White, J.R.1
-
11
-
-
84885954870
-
Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial
-
et al
-
Roden M, Weng J, Eilbracht J, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Diabetes & Endocrinology. 2013;1(3):208–219 doi:10.1016/s2213-8587(13)70084-6
-
(2013)
The Lancet Diabetes & Endocrinology.
, vol.1
, Issue.3
, pp. 208-219
-
-
Roden, M.1
Weng, J.2
Eilbracht, J.3
-
12
-
-
83655184724
-
Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors
-
et al
-
Grempler R, Thomas L, Eckhardt M, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14(1):83–90 doi:10.1111/j.1463-1326.2011.01517.x
-
(2012)
Diabetes Obes Metab.
, vol.14
, Issue.1
, pp. 83-90
-
-
Grempler, R.1
Thomas, L.2
Eckhardt, M.3
-
13
-
-
84879384843
-
Safety, tolerability, pharmacokinetics and pharmacodynamics of single doses of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in healthy Japanese subjects
-
et al
-
Sarashina A, Koiwai K, Seman LJ, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of single doses of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in healthy Japanese subjects. Drug Metabolism and Pharmacokinetics. 2013;28(3):213–219 doi:10.2133/dmpk.DMPK-12-RG-082
-
(2013)
Drug Metabolism and Pharmacokinetics.
, vol.28
, Issue.3
, pp. 213-219
-
-
Sarashina, A.1
Koiwai, K.2
Seman, L.J.3
-
14
-
-
84896826460
-
Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor
-
Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–25 doi:10.1007/s40262-013-0126-x
-
(2014)
Clin Pharmacokinet.
, vol.53
, Issue.3
, pp. 213-225
-
-
Scheen, A.J.1
-
15
-
-
84877652575
-
Empagliflozin (BI 10773), a potent and selective SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects
-
et al
-
Seman L, Macha S, Nehmiz G, et al. Empagliflozin (BI 10773), a potent and selective SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clinical Pharmacology in Drug Development. 2013;2(2):152–161 doi:10.1002/cpdd.16
-
(2013)
Clinical Pharmacology in Drug Development.
, vol.2
, Issue.2
, pp. 152-161
-
-
Seman, L.1
Macha, S.2
Nehmiz, G.3
-
16
-
-
33845866857
-
Inflammation and metabolic disorders
-
Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7 doi:10.1038/nature05485
-
(2006)
Nature.
, vol.444
, Issue.7121
, pp. 860-867
-
-
Hotamisligil, G.S.1
-
17
-
-
84863223829
-
CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status
-
et al. et al
-
Kitade H, Sawamoto K, Nagashimada M, et al. et al. CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes. 2012;61(7):1680–90 doi:10.2337/db11-1506/-/DC1
-
(2012)
Diabetes.
, vol.61
, Issue.7
, pp. 1680-1690
-
-
Kitade, H.1
Sawamoto, K.2
Nagashimada, M.3
-
18
-
-
84901424065
-
Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity
-
et al
-
Huh JY, Park YJ, Ham M, et al. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells. 2014;37(5):365–71 doi:10.14348/molcells.2014.0074
-
(2014)
Mol Cells.
, vol.37
, Issue.5
, pp. 365-371
-
-
Huh, J.Y.1
Park, Y.J.2
Ham, M.3
-
19
-
-
33846026712
-
Obesity induces a phenotypic switch in adipose tissue macrophage polarization
-
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84 doi:10.1172/JCI29881
-
(2007)
J Clin Invest.
, vol.117
, Issue.1
, pp. 175-184
-
-
Lumeng, C.N.1
Bodzin, J.L.2
Saltiel, A.R.3
-
20
-
-
84926656185
-
Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages
-
Dey A, Allen J, Hankey-Giblin PA. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Front Immunol. 2014;5:683. doi:10.3389/fimmu.2014.00683
-
(2014)
Front Immunol.
, vol.5
, pp. 683
-
-
Dey, A.1
Allen, J.2
Hankey-Giblin, P.A.3
-
21
-
-
0037265240
-
Alternative activation of macrophages
-
Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35 doi:10.1038/nri978
-
(2003)
Nat Rev Immunol.
, vol.3
, Issue.1
, pp. 23-35
-
-
Gordon, S.1
-
22
-
-
84858280061
-
Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine
-
et al
-
Brown BN, Ratner BD, Goodman SB, et al. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33(15).3792–802 doi:10.1016/j.biomaterials.2012.02034
-
(2012)
Biomaterials.
, vol.33
, Issue.15
, pp. 3792-3802
-
-
Brown, B.N.1
Ratner, B.D.2
Goodman, S.B.3
-
23
-
-
84918563183
-
Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function?
-
et al
-
Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, et al. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front Immunol. 2014;5:470. doi:10.3389/fimmu.2014.00470
-
(2014)
Front Immunol.
, vol.5
, pp. 470
-
-
Kraakman, M.J.1
Murphy, A.J.2
Jandeleit-Dahm, K.3
-
24
-
-
0027459878
-
Adipose expression of tumor necrosis factor-alpha_ direct role in obesity-linked insulin resistance
-
Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha_ direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91 doi:10.1126/science.7678183
-
(1993)
Science.
, vol.259
, Issue.5091
, pp. 87-91
-
-
Hotamisligil, G.S.1
Shargill, N.S.2
Spiegelman, B.M.3
-
25
-
-
9144223683
-
Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance
-
et al. et al
-
Xu H, Barnes GT, Yang Q, et al. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30 doi:10.1172/JCI19451
-
(2003)
J Clin Invest.
, vol.112
, Issue.12
, pp. 1821-1830
-
-
Xu, H.1
Barnes, G.T.2
Yang, Q.3
-
26
-
-
68349148211
-
Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
-
et al. et al
-
Feuerer M, Herrero L, Cipolletta D, et al. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15(8):930–9 doi:10.1038/nm.2002
-
(2009)
Nat Med.
, vol.15
, Issue.8
, pp. 930-939
-
-
Feuerer, M.1
Herrero, L.2
Cipolletta, D.3
-
27
-
-
84876746655
-
Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages
-
et al
-
Molofsky AB, Nussbaum JC, Liang HE, et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med. 2013;210(3):535–49 doi:10.1084/jem.20121964
-
(2013)
J Exp Med.
, vol.210
, Issue.3
, pp. 535-549
-
-
Molofsky, A.B.1
Nussbaum, J.C.2
Liang, H.E.3
-
28
-
-
79953046341
-
Inflammatory mechanisms in obesity
-
Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45 doi:10.1146/annurev-immunol-031210-101322
-
(2011)
Annu Rev Immunol.
, vol.29
, pp. 415-445
-
-
Gregor, M.F.1
Hotamisligil, G.S.2
-
29
-
-
84899483261
-
Macrophage plasticity and polarization in liver homeostasis and pathology
-
Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology. 2014;59(5):2034–42 doi:10.1002/hep.26754
-
(2014)
Hepatology.
, vol.59
, Issue.5
, pp. 2034-2042
-
-
Sica, A.1
Invernizzi, P.2
Mantovani, A.3
-
30
-
-
77951918926
-
Macrophages, inflammation, and insulin resistance
-
Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46 doi:10.1146/annurev-physiol-021909-135846
-
(2010)
Annu Rev Physiol.
, vol.72
, pp. 219-246
-
-
Olefsky, J.M.1
Glass, C.K.2
-
31
-
-
84888063933
-
Beyond stem cells: self-renewal of differentiated macrophages
-
Sieweke MH, Allen JE. Beyond stem cells: self-renewal of differentiated macrophages. Science. 2013;342(6161):1242974. doi:10.1126/science.1242974
-
(2013)
Science.
, vol.342
, Issue.6161
, pp. 1242974
-
-
Sieweke, M.H.1
Allen, J.E.2
-
32
-
-
84857883847
-
Macrophage plasticity and polarization: in vivo veritas
-
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95 doi:10.1172/JCI59643
-
(2012)
J Clin Invest.
, vol.122
, Issue.3
, pp. 787-795
-
-
Sica, A.1
Mantovani, A.2
-
33
-
-
84978708500
-
Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells
-
Jager J, Aparicio-Vergara M, Aouadi M. Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells. J Intern Med. 2016;280(2):209–20 doi:10.1111/joim.12483
-
(2016)
J Intern Med.
, vol.280
, Issue.2
, pp. 209-220
-
-
Jager, J.1
Aparicio-Vergara, M.2
Aouadi, M.3
-
34
-
-
85012065385
-
Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease
-
et al
-
Xu L, Kitade H, Ni Y, et al. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules. 2015;5(3):1563–79 doi:10.3390/biom5031563
-
(2015)
Biomolecules.
, vol.5
, Issue.3
, pp. 1563-1579
-
-
Xu, L.1
Kitade, H.2
Ni, Y.3
-
35
-
-
0030756346
-
Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function
-
et al
-
Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389(6651):610–4 doi:10.1038/39335
-
(1997)
Nature.
, vol.389
, Issue.6651
, pp. 610-614
-
-
Uysal, K.T.1
Wiesbrock, S.M.2
Marino, M.W.3
-
36
-
-
84885476895
-
Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice
-
et al. et al
-
Tahara A, Kurosaki E, Yokono M, et al. et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur J Pharmacol. 2013;715(1-3):246–55 doi:10.1016/j.ejphar.2013.05.014
-
(2013)
Eur J Pharmacol.
, vol.715
, Issue.1-3
, pp. 246-255
-
-
Tahara, A.1
Kurosaki, E.2
Yokono, M.3
-
37
-
-
84903528312
-
Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice
-
et al. et al
-
Terami N, Ogawa D, Tachibana H, et al. et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 2014;9(6):e100777. doi:10.1371/journal.pone.0100777
-
(2014)
PLoS One.
, vol.9
, Issue.6
, pp. e100777
-
-
Terami, N.1
Ogawa, D.2
Tachibana, H.3
-
38
-
-
85020077721
-
SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice
-
et al
-
Xu L, Nagata N, Nagashimada M, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–149 doi:10.1016/j.ebiom.2017.05.028
-
(2017)
EBioMedicine.
, vol.20
, pp. 137-149
-
-
Xu, L.1
Nagata, N.2
Nagashimada, M.3
-
39
-
-
25844457693
-
Obesity
-
Haslam DW, James WPT. Obesity. The Lancet. 2005;366(9492):1197–1209 doi:10.1016/s0140-6736(05)67483-1
-
(2005)
The Lancet.
, vol.366
, Issue.9492
, pp. 1197-1209
-
-
Haslam, D.W.1
James, W.P.T.2
-
40
-
-
84960517126
-
Tofogliflozin improves insulin resistance in skeletal muscle and accelerates lipolysis in adipose tissue in male mice
-
et al. et al
-
Obata A, Kubota N, Kubota T, et al. et al. Tofogliflozin improves insulin resistance in skeletal muscle and accelerates lipolysis in adipose tissue in male mice. Endocrinology. 2016;157(3):1029–42 doi:10.1210/en.2015-1588
-
(2016)
Endocrinology.
, vol.157
, Issue.3
, pp. 1029-1042
-
-
Obata, A.1
Kubota, N.2
Kubota, T.3
-
41
-
-
84864371186
-
Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats
-
et al
-
Devenny JJ, Godonis HE, Harvey SJ, et al. Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats. Obesity (Silver Spring). 2012;20(8):1645–52 doi:10.1038/oby.2012.59
-
(2012)
Obesity (Silver Spring).
, vol.20
, Issue.8
, pp. 1645-1652
-
-
Devenny, J.J.1
Godonis, H.E.2
Harvey, S.J.3
-
42
-
-
84946474255
-
Remogliflozin etabonate improves fatty liver disease in diet-induced obese male mice
-
et al
-
Nakano S, Katsuno K, Isaji M, et al. Remogliflozin etabonate improves fatty liver disease in diet-induced obese male mice. J Clin Exp Hepatol. 2015;5(3):190–8 doi:10.1016/j.jceh.2015.02.005
-
(2015)
J Clin Exp Hepatol.
, vol.5
, Issue.3
, pp. 190-198
-
-
Nakano, S.1
Katsuno, K.2
Isaji, M.3
-
43
-
-
84947786115
-
Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus
-
et al. et al
-
Qiang S, Nakatsu Y, Seno Y, et al. et al. Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus. Diabetol Metab Syndr. 2015;7:104. doi:10.1186/s13098-015-0102-8
-
(2015)
Diabetol Metab Syndr.
, vol.7
, pp. 104
-
-
Qiang, S.1
Nakatsu, Y.2
Seno, Y.3
-
44
-
-
84975789692
-
Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism
-
et al
-
Briand F, Mayoux E, Brousseau E, et al. Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism. Diabetes. 2016;65(7):2032–8 doi:10.2337/db16-0049
-
(2016)
Diabetes.
, vol.65
, Issue.7
, pp. 2032-2038
-
-
Briand, F.1
Mayoux, E.2
Brousseau, E.3
-
45
-
-
84964608804
-
Shift to fatty substrate utilization in response to sodium-glucose votransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes
-
et al
-
Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium-glucose votransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190–1195 doi:10.2337/db15-1356
-
(2016)
Diabetes.
, vol.65
, Issue.5
, pp. 1190-1195
-
-
Ferrannini, E.1
Baldi, S.2
Frascerra, S.3
-
46
-
-
84987624200
-
+ /glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels
-
et al
-
+ /glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65(9):2784–94 doi:10.2337/db16-0058
-
(2016)
Diabetes.
, vol.65
, Issue.9
, pp. 2784-2794
-
-
Hawley, S.A.1
Ford, R.J.2
Smith, B.K.3
-
47
-
-
84947648682
-
Differential effects of leptin and adiponectin in endothelial angiogenesis
-
Adya R, Tan BK, Randeva HS. Differential effects of leptin and adiponectin in endothelial angiogenesis. J Diabetes Res. 2015;2015:648239. doi:10.1155/2015/648239
-
(2015)
J Diabetes Res.
, vol.2015
, pp. 648239
-
-
Adya, R.1
Tan, B.K.2
Randeva, H.S.3
-
48
-
-
0034611678
-
Towards a molecular understanding of adaptive thermogenesis
-
Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652–60 doi:10.1038/35007527
-
(2000)
Nature.
, vol.404
, Issue.6778
, pp. 652-660
-
-
Lowell, B.B.1
Spiegelman, B.M.2
-
49
-
-
84892702771
-
Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch
-
et al. et al
-
Cohen P, Levy JD, Zhang Y, et al. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1-2):304–16 doi:10.1016/j.cell.2013.12.021
-
(2014)
Cell.
, vol.156
, Issue.1-2
, pp. 304-316
-
-
Cohen, P.1
Levy, J.D.2
Zhang, Y.3
-
50
-
-
50049122271
-
PRDM16 controls a brown fat/skeletal muscle switch
-
et al. et al
-
Seale P, Bjork B, Yang W, et al. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–7 doi:10.1038/nature07182
-
(2008)
Nature.
, vol.454
, Issue.7207
, pp. 961-967
-
-
Seale, P.1
Bjork, B.2
Yang, W.3
-
51
-
-
84873518501
-
Adaptive thermogenesis in adipocytes: is beige the new brown?
-
Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27(3):234–50 doi:10.1101/gad.211649.112
-
(2013)
Genes Dev.
, vol.27
, Issue.3
, pp. 234-250
-
-
Wu, J.1
Cohen, P.2
Spiegelman, B.M.3
-
52
-
-
84884840427
-
Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes
-
Lo KA, Sun L. Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Rep. 2013;33(5): doi:10.1042/BSR20130046
-
(2013)
Biosci Rep.
, vol.33
, Issue.5
-
-
Lo, K.A.1
Sun, L.2
-
53
-
-
82555186955
-
Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis
-
et al
-
Nguyen KD, Qiu Y, Cui X, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011;480(7375):104–8 doi:10.1038/nature10653
-
(2011)
Nature.
, vol.480
, Issue.7375
, pp. 104-108
-
-
Nguyen, K.D.1
Qiu, Y.2
Cui, X.3
-
54
-
-
84902094655
-
Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat
-
et al
-
Qiu Y, Nguyen KD, Odegaard JI, et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157(6):1292–308 doi:10.1016/j.cell.2014.03.066
-
(2014)
Cell.
, vol.157
, Issue.6
, pp. 1292-1308
-
-
Qiu, Y.1
Nguyen, K.D.2
Odegaard, J.I.3
-
55
-
-
84938747174
-
Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation
-
et al. et al
-
Hui X, Gu P, Zhang J, et al. et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 2015;22(2):279–90 doi:10.1016/j.cmet.2015.06.004
-
(2015)
Cell Metab.
, vol.22
, Issue.2
, pp. 279-290
-
-
Hui, X.1
Gu, P.2
Zhang, J.3
-
56
-
-
84963706055
-
Sodium intake regulates glucose homeostasis through the PPARdelta/adiponectin-mediated SGLT2 pathway
-
et al. et al
-
Zhao Y, Gao P, Sun F, et al. et al. Sodium intake regulates glucose homeostasis through the PPARdelta/adiponectin-mediated SGLT2 pathway. Cell Metab. 2016;23(4):699–711 doi:10.1016/j.cmet.2016.02.019
-
(2016)
Cell Metab.
, vol.23
, Issue.4
, pp. 699-711
-
-
Zhao, Y.1
Gao, P.2
Sun, F.3
-
57
-
-
84899977912
-
Efficacy and safety of tofogliflozin administered for 52 weeks as monotherapy or combined with other oral hypoglycaemic agents in Japanese patients with type 2 diabetes
-
et al
-
Tanizawa Y, Araki E, Tobe K, et al. Efficacy and safety of tofogliflozin administered for 52 weeks as monotherapy or combined with other oral hypoglycaemic agents in Japanese patients with type 2 diabetes. Diabetologia. 2013;56:S82–S83
-
(2013)
Diabetologia.
, vol.56
, pp. S82-S83
-
-
Tanizawa, Y.1
Araki, E.2
Tobe, K.3
-
58
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
et al. et al
-
Inagaki T, Dutchak P, Zhao G, et al. et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5(6):415–25 doi:10.1016/j.cmet.2007.05.003
-
(2007)
Cell Metab.
, vol.5
, Issue.6
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
-
59
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
et al
-
Badman MK, Pissios P, Kennedy AR, et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5(6):426–37 doi:10.1016/j.cmet.2007.05.002
-
(2007)
Cell Metab.
, vol.5
, Issue.6
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
-
60
-
-
20444435873
-
FGF21 as a novel metabolic regulator
-
et al. et al
-
Kharitonenkov A, Shiyanova TL, Koester A, et al. et al. FGF21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627–35 doi:10.1172/JCI23606
-
(2005)
J Clin Invest.
, vol.115
, Issue.6
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
-
61
-
-
84863012022
-
FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
-
et al. et al
-
Fisher FM, Kleiner S, Douris N, et al. et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81 doi:10.1101/gad.177857.111
-
(2012)
Genes Dev.
, vol.26
, Issue.3
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
|