메뉴 건너뛰기




Volumn 7, Issue 2, 2018, Pages 121-128

Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization

Author keywords

adipose tissue macrophage; empagliflozin; fat browning; inflammation; insulin resistance

Indexed keywords

ADIPONECTIN; CANAGLIFLOZIN; DAPAGLIFLOZIN; FIBROBLAST GROWTH FACTOR 21; GAMMA INTERFERON; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; INTERLEUKIN 4; INTERLEUKIN 6; IPRAGLIFLOZIN; MONOCYTE CHEMOTACTIC PROTEIN 1; PHLORIZIN; RANTES; REMOGLIFLOZIN ETABONATE; SERGLIFLOZIN ETABONATE; SODIUM GLUCOSE COTRANSPORTER 2 INHIBITOR; TOFOGLIFLOZIN; TUMOR NECROSIS FACTOR; UNCOUPLING PROTEIN 1;

EID: 85060618900     PISSN: 21623945     EISSN: 2162397X     Source Type: Journal    
DOI: 10.1080/21623945.2017.1413516     Document Type: Note
Times cited : (102)

References (61)
  • 1
    • 84883550975 scopus 로고    scopus 로고
    • The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors
    • et al. et al
    • Cangoz S, Chang YY, Chempakaseril SJ, et al. et al. The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors. J Clin Pharm Ther. 2013;38(5):350–9 doi:10.1111/jcpt.12077
    • (2013) J Clin Pharm Ther. , vol.38 , Issue.5 , pp. 350-359
    • Cangoz, S.1    Chang, Y.Y.2    Chempakaseril, S.J.3
  • 2
    • 0036937335 scopus 로고    scopus 로고
    • Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2)
    • et al
    • Van den Heuvel LP, Assink K, Willemsen M, et al. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet. 2002;111(6):544–7 doi:10.1007/s00439-002-0820-5
    • (2002) Hum Genet. , vol.111 , Issue.6 , pp. 544-547
    • Van den Heuvel, L.P.1    Assink, K.2    Willemsen, M.3
  • 3
    • 75749094398 scopus 로고    scopus 로고
    • Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target
    • Santer R, Calado J. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin J Am Soc Nephrol. 2010;5(1):133–41 doi:10.2215/CJN.04010609
    • (2010) Clin J Am Soc Nephrol. , vol.5 , Issue.1 , pp. 133-141
    • Santer, R.1    Calado, J.2
  • 4
    • 84872400230 scopus 로고    scopus 로고
    • Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus
    • et al
    • Vallon V, Rose M, Gerasimova M, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol. 2013;304(2):F156–67 doi:10.1152/ajprenal.00409.2012
    • (2013) Am J Physiol Renal Physiol. , vol.304 , Issue.2 , pp. F156-F167
    • Vallon, V.1    Rose, M.2    Gerasimova, M.3
  • 5
    • 84879795546 scopus 로고    scopus 로고
    • A Phase IIb, randomized, placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes
    • et al
    • Ferrannini E, Seman L, Seewaldt-Becker E, et al. A Phase IIb, randomized, placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes. Diabetes Obes Metab. 2013;15(8):721–8 doi:10.1111/dom.12081
    • (2013) Diabetes Obes Metab. , vol.15 , Issue.8 , pp. 721-728
    • Ferrannini, E.1    Seman, L.2    Seewaldt-Becker, E.3
  • 6
    • 84918523582 scopus 로고    scopus 로고
    • Tofogliflozin: a highly selective SGLT2 inhibitor for the treatment of type 2 diabetes
    • et al
    • Rosenwasser RF, Rosenwasser JN, Sutton D, et al. Tofogliflozin: a highly selective SGLT2 inhibitor for the treatment of type 2 diabetes. Drugs Today (Barc). 2014;50(11):739–45 doi:10.1358/dot.2014.50112232267
    • (2014) Drugs Today (Barc). , vol.50 , Issue.11 , pp. 739-745
    • Rosenwasser, R.F.1    Rosenwasser, J.N.2    Sutton, D.3
  • 7
    • 84898600889 scopus 로고    scopus 로고
    • Canagliflozin, a sodium glucose co-transporter 2 inhibitor, improves model-based indices of beta cell function in patients with type 2 diabetes
    • Polidori D, Mari A, Ferrannini E. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, improves model-based indices of beta cell function in patients with type 2 diabetes. Diabetologia. 2014;57(5):891–901 doi:10.1007/s00125-014-3196-x
    • (2014) Diabetologia. , vol.57 , Issue.5 , pp. 891-901
    • Polidori, D.1    Mari, A.2    Ferrannini, E.3
  • 8
    • 84928911112 scopus 로고    scopus 로고
    • Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents
    • Vivian EM. Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents. Drugs Context. 2014;3:212264. doi:10.7573/dic.212264
    • (2014) Drugs Context. , vol.3 , pp. 212264
    • Vivian, E.M.1
  • 9
    • 84908066747 scopus 로고    scopus 로고
    • Update on developments with SGLT2 inhibitors in the management of type 2 diabetes
    • Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014;8:1335–80 doi:10.2147/DDDT.S50773
    • (2014) Drug Des Devel Ther. , vol.8 , pp. 1335-1380
    • Nauck, M.A.1
  • 10
    • 84928264272 scopus 로고    scopus 로고
    • Empagliflozin, an SGLT2 inhibitor for the treatment of type 2 diabetes mellitus: A review of the evidence
    • White JR, Jr. Empagliflozin, an SGLT2 inhibitor for the treatment of type 2 diabetes mellitus: A review of the evidence. Ann Pharmacother. 2015; doi:10.1177/1060028015573564
    • (2015) Ann Pharmacother.
    • White, J.R.1
  • 11
    • 84885954870 scopus 로고    scopus 로고
    • Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial
    • et al
    • Roden M, Weng J, Eilbracht J, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Diabetes & Endocrinology. 2013;1(3):208–219 doi:10.1016/s2213-8587(13)70084-6
    • (2013) The Lancet Diabetes & Endocrinology. , vol.1 , Issue.3 , pp. 208-219
    • Roden, M.1    Weng, J.2    Eilbracht, J.3
  • 12
    • 83655184724 scopus 로고    scopus 로고
    • Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors
    • et al
    • Grempler R, Thomas L, Eckhardt M, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14(1):83–90 doi:10.1111/j.1463-1326.2011.01517.x
    • (2012) Diabetes Obes Metab. , vol.14 , Issue.1 , pp. 83-90
    • Grempler, R.1    Thomas, L.2    Eckhardt, M.3
  • 13
    • 84879384843 scopus 로고    scopus 로고
    • Safety, tolerability, pharmacokinetics and pharmacodynamics of single doses of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in healthy Japanese subjects
    • et al
    • Sarashina A, Koiwai K, Seman LJ, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of single doses of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in healthy Japanese subjects. Drug Metabolism and Pharmacokinetics. 2013;28(3):213–219 doi:10.2133/dmpk.DMPK-12-RG-082
    • (2013) Drug Metabolism and Pharmacokinetics. , vol.28 , Issue.3 , pp. 213-219
    • Sarashina, A.1    Koiwai, K.2    Seman, L.J.3
  • 14
    • 84896826460 scopus 로고    scopus 로고
    • Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor
    • Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–25 doi:10.1007/s40262-013-0126-x
    • (2014) Clin Pharmacokinet. , vol.53 , Issue.3 , pp. 213-225
    • Scheen, A.J.1
  • 15
    • 84877652575 scopus 로고    scopus 로고
    • Empagliflozin (BI 10773), a potent and selective SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects
    • et al
    • Seman L, Macha S, Nehmiz G, et al. Empagliflozin (BI 10773), a potent and selective SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clinical Pharmacology in Drug Development. 2013;2(2):152–161 doi:10.1002/cpdd.16
    • (2013) Clinical Pharmacology in Drug Development. , vol.2 , Issue.2 , pp. 152-161
    • Seman, L.1    Macha, S.2    Nehmiz, G.3
  • 16
    • 33845866857 scopus 로고    scopus 로고
    • Inflammation and metabolic disorders
    • Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7 doi:10.1038/nature05485
    • (2006) Nature. , vol.444 , Issue.7121 , pp. 860-867
    • Hotamisligil, G.S.1
  • 17
    • 84863223829 scopus 로고    scopus 로고
    • CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status
    • et al. et al
    • Kitade H, Sawamoto K, Nagashimada M, et al. et al. CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes. 2012;61(7):1680–90 doi:10.2337/db11-1506/-/DC1
    • (2012) Diabetes. , vol.61 , Issue.7 , pp. 1680-1690
    • Kitade, H.1    Sawamoto, K.2    Nagashimada, M.3
  • 18
    • 84901424065 scopus 로고    scopus 로고
    • Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity
    • et al
    • Huh JY, Park YJ, Ham M, et al. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells. 2014;37(5):365–71 doi:10.14348/molcells.2014.0074
    • (2014) Mol Cells. , vol.37 , Issue.5 , pp. 365-371
    • Huh, J.Y.1    Park, Y.J.2    Ham, M.3
  • 19
    • 33846026712 scopus 로고    scopus 로고
    • Obesity induces a phenotypic switch in adipose tissue macrophage polarization
    • Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84 doi:10.1172/JCI29881
    • (2007) J Clin Invest. , vol.117 , Issue.1 , pp. 175-184
    • Lumeng, C.N.1    Bodzin, J.L.2    Saltiel, A.R.3
  • 20
    • 84926656185 scopus 로고    scopus 로고
    • Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages
    • Dey A, Allen J, Hankey-Giblin PA. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Front Immunol. 2014;5:683. doi:10.3389/fimmu.2014.00683
    • (2014) Front Immunol. , vol.5 , pp. 683
    • Dey, A.1    Allen, J.2    Hankey-Giblin, P.A.3
  • 21
    • 0037265240 scopus 로고    scopus 로고
    • Alternative activation of macrophages
    • Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35 doi:10.1038/nri978
    • (2003) Nat Rev Immunol. , vol.3 , Issue.1 , pp. 23-35
    • Gordon, S.1
  • 22
    • 84858280061 scopus 로고    scopus 로고
    • Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine
    • et al
    • Brown BN, Ratner BD, Goodman SB, et al. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33(15).3792–802 doi:10.1016/j.biomaterials.2012.02034
    • (2012) Biomaterials. , vol.33 , Issue.15 , pp. 3792-3802
    • Brown, B.N.1    Ratner, B.D.2    Goodman, S.B.3
  • 23
    • 84918563183 scopus 로고    scopus 로고
    • Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function?
    • et al
    • Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, et al. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front Immunol. 2014;5:470. doi:10.3389/fimmu.2014.00470
    • (2014) Front Immunol. , vol.5 , pp. 470
    • Kraakman, M.J.1    Murphy, A.J.2    Jandeleit-Dahm, K.3
  • 24
    • 0027459878 scopus 로고
    • Adipose expression of tumor necrosis factor-alpha_ direct role in obesity-linked insulin resistance
    • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha_ direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91 doi:10.1126/science.7678183
    • (1993) Science. , vol.259 , Issue.5091 , pp. 87-91
    • Hotamisligil, G.S.1    Shargill, N.S.2    Spiegelman, B.M.3
  • 25
    • 9144223683 scopus 로고    scopus 로고
    • Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance
    • et al. et al
    • Xu H, Barnes GT, Yang Q, et al. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30 doi:10.1172/JCI19451
    • (2003) J Clin Invest. , vol.112 , Issue.12 , pp. 1821-1830
    • Xu, H.1    Barnes, G.T.2    Yang, Q.3
  • 26
    • 68349148211 scopus 로고    scopus 로고
    • Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters
    • et al. et al
    • Feuerer M, Herrero L, Cipolletta D, et al. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15(8):930–9 doi:10.1038/nm.2002
    • (2009) Nat Med. , vol.15 , Issue.8 , pp. 930-939
    • Feuerer, M.1    Herrero, L.2    Cipolletta, D.3
  • 27
    • 84876746655 scopus 로고    scopus 로고
    • Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages
    • et al
    • Molofsky AB, Nussbaum JC, Liang HE, et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med. 2013;210(3):535–49 doi:10.1084/jem.20121964
    • (2013) J Exp Med. , vol.210 , Issue.3 , pp. 535-549
    • Molofsky, A.B.1    Nussbaum, J.C.2    Liang, H.E.3
  • 28
    • 79953046341 scopus 로고    scopus 로고
    • Inflammatory mechanisms in obesity
    • Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45 doi:10.1146/annurev-immunol-031210-101322
    • (2011) Annu Rev Immunol. , vol.29 , pp. 415-445
    • Gregor, M.F.1    Hotamisligil, G.S.2
  • 29
    • 84899483261 scopus 로고    scopus 로고
    • Macrophage plasticity and polarization in liver homeostasis and pathology
    • Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology. 2014;59(5):2034–42 doi:10.1002/hep.26754
    • (2014) Hepatology. , vol.59 , Issue.5 , pp. 2034-2042
    • Sica, A.1    Invernizzi, P.2    Mantovani, A.3
  • 30
    • 77951918926 scopus 로고    scopus 로고
    • Macrophages, inflammation, and insulin resistance
    • Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46 doi:10.1146/annurev-physiol-021909-135846
    • (2010) Annu Rev Physiol. , vol.72 , pp. 219-246
    • Olefsky, J.M.1    Glass, C.K.2
  • 31
    • 84888063933 scopus 로고    scopus 로고
    • Beyond stem cells: self-renewal of differentiated macrophages
    • Sieweke MH, Allen JE. Beyond stem cells: self-renewal of differentiated macrophages. Science. 2013;342(6161):1242974. doi:10.1126/science.1242974
    • (2013) Science. , vol.342 , Issue.6161 , pp. 1242974
    • Sieweke, M.H.1    Allen, J.E.2
  • 32
    • 84857883847 scopus 로고    scopus 로고
    • Macrophage plasticity and polarization: in vivo veritas
    • Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95 doi:10.1172/JCI59643
    • (2012) J Clin Invest. , vol.122 , Issue.3 , pp. 787-795
    • Sica, A.1    Mantovani, A.2
  • 33
    • 84978708500 scopus 로고    scopus 로고
    • Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells
    • Jager J, Aparicio-Vergara M, Aouadi M. Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells. J Intern Med. 2016;280(2):209–20 doi:10.1111/joim.12483
    • (2016) J Intern Med. , vol.280 , Issue.2 , pp. 209-220
    • Jager, J.1    Aparicio-Vergara, M.2    Aouadi, M.3
  • 34
    • 85012065385 scopus 로고    scopus 로고
    • Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease
    • et al
    • Xu L, Kitade H, Ni Y, et al. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules. 2015;5(3):1563–79 doi:10.3390/biom5031563
    • (2015) Biomolecules. , vol.5 , Issue.3 , pp. 1563-1579
    • Xu, L.1    Kitade, H.2    Ni, Y.3
  • 35
    • 0030756346 scopus 로고    scopus 로고
    • Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function
    • et al
    • Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389(6651):610–4 doi:10.1038/39335
    • (1997) Nature. , vol.389 , Issue.6651 , pp. 610-614
    • Uysal, K.T.1    Wiesbrock, S.M.2    Marino, M.W.3
  • 36
    • 84885476895 scopus 로고    scopus 로고
    • Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice
    • et al. et al
    • Tahara A, Kurosaki E, Yokono M, et al. et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur J Pharmacol. 2013;715(1-3):246–55 doi:10.1016/j.ejphar.2013.05.014
    • (2013) Eur J Pharmacol. , vol.715 , Issue.1-3 , pp. 246-255
    • Tahara, A.1    Kurosaki, E.2    Yokono, M.3
  • 37
    • 84903528312 scopus 로고    scopus 로고
    • Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice
    • et al. et al
    • Terami N, Ogawa D, Tachibana H, et al. et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 2014;9(6):e100777. doi:10.1371/journal.pone.0100777
    • (2014) PLoS One. , vol.9 , Issue.6 , pp. e100777
    • Terami, N.1    Ogawa, D.2    Tachibana, H.3
  • 38
    • 85020077721 scopus 로고    scopus 로고
    • SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice
    • et al
    • Xu L, Nagata N, Nagashimada M, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–149 doi:10.1016/j.ebiom.2017.05.028
    • (2017) EBioMedicine. , vol.20 , pp. 137-149
    • Xu, L.1    Nagata, N.2    Nagashimada, M.3
  • 39
    • 25844457693 scopus 로고    scopus 로고
    • Obesity
    • Haslam DW, James WPT. Obesity. The Lancet. 2005;366(9492):1197–1209 doi:10.1016/s0140-6736(05)67483-1
    • (2005) The Lancet. , vol.366 , Issue.9492 , pp. 1197-1209
    • Haslam, D.W.1    James, W.P.T.2
  • 40
    • 84960517126 scopus 로고    scopus 로고
    • Tofogliflozin improves insulin resistance in skeletal muscle and accelerates lipolysis in adipose tissue in male mice
    • et al. et al
    • Obata A, Kubota N, Kubota T, et al. et al. Tofogliflozin improves insulin resistance in skeletal muscle and accelerates lipolysis in adipose tissue in male mice. Endocrinology. 2016;157(3):1029–42 doi:10.1210/en.2015-1588
    • (2016) Endocrinology. , vol.157 , Issue.3 , pp. 1029-1042
    • Obata, A.1    Kubota, N.2    Kubota, T.3
  • 41
    • 84864371186 scopus 로고    scopus 로고
    • Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats
    • et al
    • Devenny JJ, Godonis HE, Harvey SJ, et al. Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats. Obesity (Silver Spring). 2012;20(8):1645–52 doi:10.1038/oby.2012.59
    • (2012) Obesity (Silver Spring). , vol.20 , Issue.8 , pp. 1645-1652
    • Devenny, J.J.1    Godonis, H.E.2    Harvey, S.J.3
  • 42
    • 84946474255 scopus 로고    scopus 로고
    • Remogliflozin etabonate improves fatty liver disease in diet-induced obese male mice
    • et al
    • Nakano S, Katsuno K, Isaji M, et al. Remogliflozin etabonate improves fatty liver disease in diet-induced obese male mice. J Clin Exp Hepatol. 2015;5(3):190–8 doi:10.1016/j.jceh.2015.02.005
    • (2015) J Clin Exp Hepatol. , vol.5 , Issue.3 , pp. 190-198
    • Nakano, S.1    Katsuno, K.2    Isaji, M.3
  • 43
    • 84947786115 scopus 로고    scopus 로고
    • Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus
    • et al. et al
    • Qiang S, Nakatsu Y, Seno Y, et al. et al. Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus. Diabetol Metab Syndr. 2015;7:104. doi:10.1186/s13098-015-0102-8
    • (2015) Diabetol Metab Syndr. , vol.7 , pp. 104
    • Qiang, S.1    Nakatsu, Y.2    Seno, Y.3
  • 44
    • 84975789692 scopus 로고    scopus 로고
    • Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism
    • et al
    • Briand F, Mayoux E, Brousseau E, et al. Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism. Diabetes. 2016;65(7):2032–8 doi:10.2337/db16-0049
    • (2016) Diabetes. , vol.65 , Issue.7 , pp. 2032-2038
    • Briand, F.1    Mayoux, E.2    Brousseau, E.3
  • 45
    • 84964608804 scopus 로고    scopus 로고
    • Shift to fatty substrate utilization in response to sodium-glucose votransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes
    • et al
    • Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium-glucose votransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190–1195 doi:10.2337/db15-1356
    • (2016) Diabetes. , vol.65 , Issue.5 , pp. 1190-1195
    • Ferrannini, E.1    Baldi, S.2    Frascerra, S.3
  • 46
    • 84987624200 scopus 로고    scopus 로고
    • + /glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels
    • et al
    • + /glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65(9):2784–94 doi:10.2337/db16-0058
    • (2016) Diabetes. , vol.65 , Issue.9 , pp. 2784-2794
    • Hawley, S.A.1    Ford, R.J.2    Smith, B.K.3
  • 47
    • 84947648682 scopus 로고    scopus 로고
    • Differential effects of leptin and adiponectin in endothelial angiogenesis
    • Adya R, Tan BK, Randeva HS. Differential effects of leptin and adiponectin in endothelial angiogenesis. J Diabetes Res. 2015;2015:648239. doi:10.1155/2015/648239
    • (2015) J Diabetes Res. , vol.2015 , pp. 648239
    • Adya, R.1    Tan, B.K.2    Randeva, H.S.3
  • 48
    • 0034611678 scopus 로고    scopus 로고
    • Towards a molecular understanding of adaptive thermogenesis
    • Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652–60 doi:10.1038/35007527
    • (2000) Nature. , vol.404 , Issue.6778 , pp. 652-660
    • Lowell, B.B.1    Spiegelman, B.M.2
  • 49
    • 84892702771 scopus 로고    scopus 로고
    • Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch
    • et al. et al
    • Cohen P, Levy JD, Zhang Y, et al. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1-2):304–16 doi:10.1016/j.cell.2013.12.021
    • (2014) Cell. , vol.156 , Issue.1-2 , pp. 304-316
    • Cohen, P.1    Levy, J.D.2    Zhang, Y.3
  • 50
    • 50049122271 scopus 로고    scopus 로고
    • PRDM16 controls a brown fat/skeletal muscle switch
    • et al. et al
    • Seale P, Bjork B, Yang W, et al. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–7 doi:10.1038/nature07182
    • (2008) Nature. , vol.454 , Issue.7207 , pp. 961-967
    • Seale, P.1    Bjork, B.2    Yang, W.3
  • 51
    • 84873518501 scopus 로고    scopus 로고
    • Adaptive thermogenesis in adipocytes: is beige the new brown?
    • Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013;27(3):234–50 doi:10.1101/gad.211649.112
    • (2013) Genes Dev. , vol.27 , Issue.3 , pp. 234-250
    • Wu, J.1    Cohen, P.2    Spiegelman, B.M.3
  • 52
    • 84884840427 scopus 로고    scopus 로고
    • Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes
    • Lo KA, Sun L. Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Rep. 2013;33(5): doi:10.1042/BSR20130046
    • (2013) Biosci Rep. , vol.33 , Issue.5
    • Lo, K.A.1    Sun, L.2
  • 53
    • 82555186955 scopus 로고    scopus 로고
    • Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis
    • et al
    • Nguyen KD, Qiu Y, Cui X, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011;480(7375):104–8 doi:10.1038/nature10653
    • (2011) Nature. , vol.480 , Issue.7375 , pp. 104-108
    • Nguyen, K.D.1    Qiu, Y.2    Cui, X.3
  • 54
    • 84902094655 scopus 로고    scopus 로고
    • Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat
    • et al
    • Qiu Y, Nguyen KD, Odegaard JI, et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157(6):1292–308 doi:10.1016/j.cell.2014.03.066
    • (2014) Cell. , vol.157 , Issue.6 , pp. 1292-1308
    • Qiu, Y.1    Nguyen, K.D.2    Odegaard, J.I.3
  • 55
    • 84938747174 scopus 로고    scopus 로고
    • Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation
    • et al. et al
    • Hui X, Gu P, Zhang J, et al. et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 2015;22(2):279–90 doi:10.1016/j.cmet.2015.06.004
    • (2015) Cell Metab. , vol.22 , Issue.2 , pp. 279-290
    • Hui, X.1    Gu, P.2    Zhang, J.3
  • 56
    • 84963706055 scopus 로고    scopus 로고
    • Sodium intake regulates glucose homeostasis through the PPARdelta/adiponectin-mediated SGLT2 pathway
    • et al. et al
    • Zhao Y, Gao P, Sun F, et al. et al. Sodium intake regulates glucose homeostasis through the PPARdelta/adiponectin-mediated SGLT2 pathway. Cell Metab. 2016;23(4):699–711 doi:10.1016/j.cmet.2016.02.019
    • (2016) Cell Metab. , vol.23 , Issue.4 , pp. 699-711
    • Zhao, Y.1    Gao, P.2    Sun, F.3
  • 57
    • 84899977912 scopus 로고    scopus 로고
    • Efficacy and safety of tofogliflozin administered for 52 weeks as monotherapy or combined with other oral hypoglycaemic agents in Japanese patients with type 2 diabetes
    • et al
    • Tanizawa Y, Araki E, Tobe K, et al. Efficacy and safety of tofogliflozin administered for 52 weeks as monotherapy or combined with other oral hypoglycaemic agents in Japanese patients with type 2 diabetes. Diabetologia. 2013;56:S82–S83
    • (2013) Diabetologia. , vol.56 , pp. S82-S83
    • Tanizawa, Y.1    Araki, E.2    Tobe, K.3
  • 58
    • 34249686631 scopus 로고    scopus 로고
    • Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
    • et al. et al
    • Inagaki T, Dutchak P, Zhao G, et al. et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5(6):415–25 doi:10.1016/j.cmet.2007.05.003
    • (2007) Cell Metab. , vol.5 , Issue.6 , pp. 415-425
    • Inagaki, T.1    Dutchak, P.2    Zhao, G.3
  • 59
    • 34249711964 scopus 로고    scopus 로고
    • Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
    • et al
    • Badman MK, Pissios P, Kennedy AR, et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5(6):426–37 doi:10.1016/j.cmet.2007.05.002
    • (2007) Cell Metab. , vol.5 , Issue.6 , pp. 426-437
    • Badman, M.K.1    Pissios, P.2    Kennedy, A.R.3
  • 60
    • 20444435873 scopus 로고    scopus 로고
    • FGF21 as a novel metabolic regulator
    • et al. et al
    • Kharitonenkov A, Shiyanova TL, Koester A, et al. et al. FGF21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627–35 doi:10.1172/JCI23606
    • (2005) J Clin Invest. , vol.115 , Issue.6 , pp. 1627-1635
    • Kharitonenkov, A.1    Shiyanova, T.L.2    Koester, A.3
  • 61
    • 84863012022 scopus 로고    scopus 로고
    • FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
    • et al. et al
    • Fisher FM, Kleiner S, Douris N, et al. et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81 doi:10.1101/gad.177857.111
    • (2012) Genes Dev. , vol.26 , Issue.3 , pp. 271-281
    • Fisher, F.M.1    Kleiner, S.2    Douris, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.