메뉴 건너뛰기




Volumn 2, Issue 4, 2017, Pages 230-243

Artificial intelligence in healthcare: Past, present and future

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CEREBROVASCULAR ACCIDENT; COMPUTER ASSISTED DIAGNOSIS; COMPUTER ASSISTED THERAPY; DATA MINING; EARLY DIAGNOSIS; FORECASTING; HEALTH CARE DELIVERY; HISTORY; HUMAN; MASS COMMUNICATION; PATHOPHYSIOLOGY; PREDICTIVE VALUE; PROGNOSIS;

EID: 85050483912     PISSN: 20598688     EISSN: 20598696     Source Type: Journal    
DOI: 10.1136/svn-2017-000101     Document Type: Review
Times cited : (2340)

References (69)
  • 1
    • 84875646817 scopus 로고    scopus 로고
    • The inevitable application of big data to health care
    • Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA 2013;309:1351-2.
    • (2013) JAMA , vol.309 , pp. 1351-1352
    • Murdoch, T.B.1    Detsky, A.S.2
  • 2
    • 84975521209 scopus 로고    scopus 로고
    • How healthcare can refocus on its super-customers (patients, n =1) and customers (doctors and nurses) by leveraging lessons from amazon, uber, and watson
    • Kolker E, Özdemir V, Kolker E. How Healthcare can refocus on its Super-Customers (Patients, n =1) and Customers (Doctors and Nurses) by Leveraging Lessons from Amazon, Uber, and Watson. OMICS 2016;20:329-33.
    • (2016) OMICS , vol.20 , pp. 329-333
    • Kolker, E.1    Özdemir, V.2    Kolker, E.3
  • 3
    • 84889810890 scopus 로고    scopus 로고
    • Artificial intelligence in medicine and cardiac imaging: Harnessing big data and advanced computing to provide personalized medical diagnosis and treatment
    • Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep 2014;16:441.
    • (2014) Curr Cardiol Rep , vol.16 , pp. 441
    • Dilsizian, S.E.1    Siegel, E.L.2
  • 4
    • 64549138950 scopus 로고    scopus 로고
    • The coming of age of artificial intelligence in medicine
    • Patel VL, Shortliffe EH, Stefanelli M, et al. The coming of age of artificial intelligence in medicine. Artif Intell Med 2009;46:5-17.
    • (2009) Artif Intell Med , vol.46 , pp. 5-17
    • Patel, V.L.1    Shortliffe, E.H.2    Stefanelli, M.3
  • 5
    • 85007524689 scopus 로고    scopus 로고
    • Adapting to Artificial Intelligence: Radiologists and pathologists as information specialists
    • Jha S, Topol EJ. Adapting to Artificial Intelligence: radiologists and pathologists as information specialists. JAMA 2016;316:2353-4.
    • (2016) JAMA , vol.316 , pp. 2353-2354
    • Jha, S.1    Topol, E.J.2
  • 9
    • 84871938838 scopus 로고    scopus 로고
    • Diagnostic errors in the intensive care unit: A systematic review of autopsy studies
    • Winters B, Custer J, Galvagno SM, et al. Diagnostic errors in the intensive care unit: a systematic review of autopsy studies. BMJ Qual Saf 2012;21:894-902.
    • (2012) BMJ Qual Saf , vol.21 , pp. 894-902
    • Winters, B.1    Custer, J.2    Galvagno, S.M.3
  • 10
    • 84884602537 scopus 로고    scopus 로고
    • Cognitive and system factors contributing to diagnostic errors in radiology
    • Lee CS, Nagy PG, Weaver SJ, et al. Cognitive and system factors contributing to diagnostic errors in radiology. AJR Am J Roentgenol 2013;201:611-7.
    • (2013) AJR Am J Roentgenol , vol.201 , pp. 611-617
    • Lee, C.S.1    Nagy, P.G.2    Weaver, S.J.3
  • 11
    • 84880181330 scopus 로고    scopus 로고
    • Using artificial intelligence to improve hospital inpatient care
    • Neill DB. Using artificial intelligence to improve hospital inpatient care. IEEE Intell Syst 2013;28:92-5.
    • (2013) IEEE Intell Syst , vol.28 , pp. 92-95
    • Neill, D.B.1
  • 13
    • 84955604605 scopus 로고    scopus 로고
    • Radiomics: Images are more than pictures, they are data
    • Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278:563-77.
    • (2016) Radiology , vol.278 , pp. 563-577
    • Gillies, R.J.1    Kinahan, P.E.2    Hricak, H.3
  • 14
    • 84962585290 scopus 로고    scopus 로고
    • Integrated analysis of long noncoding RNA competing interactions reveals the potential role in progression of human gastric Cancer
    • Li CY, Liang GY, Yao WZ, et al. Integrated analysis of long noncoding RNA competing interactions reveals the potential role in progression of human gastric Cancer. Int J Oncol 2016;48:1965-76.
    • (2016) Int J Oncol , vol.48 , pp. 1965-1976
    • Li, C.Y.1    Liang, G.Y.2    Yao, W.Z.3
  • 15
    • 77955289073 scopus 로고    scopus 로고
    • Electrodiagnosis support system for localizing neural injury in an upper limb
    • Shin H, Kim KH, Song C, et al. Electrodiagnosis support system for localizing neural injury in an upper limb. J Am Med Inform Assoc 2010;17:345-7.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 345-347
    • Shin, H.1    Kim, K.H.2    Song, C.3
  • 16
    • 84929514278 scopus 로고    scopus 로고
    • Computer based extraction of phenoptypic features of human congenital anomalies from the digital literature with natural language processing techniques
    • Karakülah G, Dicle O, Koşaner O, et al. Computer based extraction of phenoptypic features of human congenital anomalies from the digital literature with natural language processing techniques. Stud Health Technol Inform 2014;205:570-4.
    • (2014) Stud Health Technol Inform , vol.205 , pp. 570-574
    • Karakülah, G.1    Dicle, O.2    Koşaner, O.3
  • 17
    • 84957921914 scopus 로고    scopus 로고
    • Machine learning and the profession of medicine
    • Darcy AM, Louie AK, Roberts LW. Machine Learning and the Profession of Medicine. JAMA 2016;315:551-2.
    • (2016) JAMA , vol.315 , pp. 551-552
    • Darcy, A.M.1    Louie, A.K.2    Roberts, L.W.3
  • 18
    • 80052063328 scopus 로고    scopus 로고
    • Automated identification of postoperative complications within an electronic medical record using natural language processing
    • Murff HJ, FitzHenry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 2011;306:848-55.
    • (2011) JAMA , vol.306 , pp. 848-855
    • Murff, H.J.1    FitzHenry, F.2    Matheny, M.E.3
  • 19
    • 85050480482 scopus 로고    scopus 로고
    • Abstract S6-07: Double blinded validation study to assess performance of IBM artificial intelligence platform, Watson for oncology in comparison with manipal multidisciplinary tumour board ? First study of 638 breast Cancer cases
    • Somashekhar SP, Kumarc R, Rauthan A, et al. Abstract S6-07: double blinded validation study to assess performance of IBM artificial intelligence platform, Watson for oncology in comparison with manipal multidisciplinary tumour board ? first study of 638 breast Cancer cases. Cancer Res 2017;77(4 Suppl):S6-07.
    • (2017) Cancer Res , vol.77 , pp. S6-S7
    • Somashekhar, S.P.1    Kumarc, R.2    Rauthan, A.3
  • 20
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin Cancer with deep neural networks
    • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin Cancer with deep neural networks. Nature 2017;542:115-8.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 21
    • 84969260549 scopus 로고    scopus 로고
    • Restoring cortical control of functional movement in a human with quadriplegia
    • Bouton CE, Shaikhouni A, Annetta NV, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 2016;533:247-50.
    • (2016) Nature , vol.533 , pp. 247-250
    • Bouton, C.E.1    Shaikhouni, A.2    Annetta, N.V.3
  • 22
    • 85025679781 scopus 로고    scopus 로고
    • Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation
    • Farina D, Vujaklija I, Sartori M, et al. Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nat Biomed Eng 2017;1:0025.
    • (2017) Nat Biomed Eng , vol.1 , pp. 0025
    • Farina, D.1    Vujaklija, I.2    Sartori, M.3
  • 25
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for detection of Diabetic Retinopathy in retinal fundus photographs. JAMA 2016;316:2402-10.
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3
  • 30
    • 84857000430 scopus 로고    scopus 로고
    • Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
    • Orru G, Pettersson-Yeo W, Marquand AF, et al. Using support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 2012;36:1140-52.
    • (2012) Neurosci Biobehav Rev , vol.36 , pp. 1140-1152
    • Orru, G.1    Pettersson-Yeo, W.2    Marquand, A.F.3
  • 32
    • 84922781392 scopus 로고    scopus 로고
    • Early diagnosis of Alzheimer?s disease based on partial least squares principal component analysis and support vector machine using segmented MRI images
    • Khedher L, Ramrez J, Grriz JM, et al. Early diagnosis of Alzheimer?s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing 2015;151:139-50.
    • (2015) Neurocomputing , vol.151 , pp. 139-150
    • Khedher, L.1    Ramrez, J.2    Grriz, J.M.3
  • 34
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan J, Wei JS, Ringnér M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001;7:673-9.
    • (2001) Nat Med , vol.7 , pp. 673-679
    • Khan, J.1    Wei, J.S.2    Ringnér, M.3
  • 35
    • 84902456334 scopus 로고    scopus 로고
    • Computer-aided detection of breast Cancer on mammograms: A swarm intelligence optimized wavelet neural network approach
    • Dheeba J, Albert Singh N, Tamil Selvi S. Computer-aided detection of breast Cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J Biomed Inform 2014;49:45-52.
    • (2014) J Biomed Inform , vol.49 , pp. 45-52
    • Dheeba, J.1    Albert Singh, N.2    Tamil Selvi, S.3
  • 36
    • 84942867128 scopus 로고    scopus 로고
    • Computer-aided diagnosis of Parkinson's disease using enhanced probabilistic neural network
    • Hirschauer TJ, Adeli H, Buford JA. Computer-Aided diagnosis of Parkinson's Disease Using Enhanced Probabilistic Neural Network. J Med Syst 2015;39:179.
    • (2015) J Med Syst , vol.39 , pp. 179
    • Hirschauer, T.J.1    Adeli, H.2    Buford, J.A.3
  • 39
    • 85050495043 scopus 로고    scopus 로고
    • accessed 1 Jun 2017
    • Research BA. Caffe. 2017. http://caffe.berkeleyvision.org/(accessed 1 Jun 2017).
    • (2017) Caffe
    • Research, B.A.1
  • 42
    • 85011903621 scopus 로고    scopus 로고
    • Mining peripheral arterial disease cases from narrative clinical notes using natural language processing
    • Afzal N, Sohn S, Abram S, et al. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing. J Vasc Surg 2017;65:1753-61.
    • (2017) J Vasc Surg , vol.65 , pp. 1753-1761
    • Afzal, N.1    Sohn, S.2    Abram, S.3
  • 43
    • 0033777731 scopus 로고    scopus 로고
    • Automatic detection of acute bacterial pneumonia from chest X-ray reports
    • Fiszman M, Chapman WW, Aronsky D, et al. Automatic detection of acute bacterial pneumonia from chest X-ray reports. J Am Med Inform Assoc 2000;7:593-604.
    • (2000) J Am Med Inform Assoc , vol.7 , pp. 593-604
    • Fiszman, M.1    Chapman, W.W.2    Aronsky, D.3
  • 44
    • 85011585991 scopus 로고    scopus 로고
    • Using electronic medical record data to report laboratory adverse events
    • Miller TP, Li Y, Getz KD, et al. Using electronic medical record data to report laboratory adverse events. Br J Haematol 2017;177:283-6.
    • (2017) Br J Haematol , vol.177 , pp. 283-286
    • Miller, T.P.1    Li, Y.2    Getz, K.D.3
  • 45
    • 85009080828 scopus 로고    scopus 로고
    • Large-scale identification of patients with cerebral aneurysms using natural language processing
    • Castro VM, Dligach D, Finan S, et al. Large-scale identification of patients with cerebral aneurysms using natural language processing. Neurology 2017;88:164-8.
    • (2017) Neurology , vol.88 , pp. 164-168
    • Castro, V.M.1    Dligach, D.2    Finan, S.3
  • 46
    • 73449144135 scopus 로고    scopus 로고
    • Stroke biomarkers: Progress and challenges for diagnosis, prognosis, differentiation, and treatment
    • Saenger AK, Christenson RH. Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin Chem 2010;56:21-33.
    • (2010) Clin Chem , vol.56 , pp. 21-33
    • Saenger, A.K.1    Christenson, R.H.2
  • 47
    • 66849126215 scopus 로고    scopus 로고
    • Role of health insurance in averting economic hardship in families after acute stroke in China
    • Heeley E, Anderson CS, Huang Y, et al. Role of health insurance in averting economic hardship in families after acute stroke in China. Stroke 2009;40:2149-56.
    • (2009) Stroke , vol.40 , pp. 2149-2156
    • Heeley, E.1    Anderson, C.S.2    Huang, Y.3
  • 48
    • 84929964917 scopus 로고    scopus 로고
    • Improving human activity recognition and its application in early stroke diagnosis
    • Villar JR, González S, Sedano J, et al. Improving human activity recognition and its application in early stroke diagnosis. Int J Neural Syst 2015;25:1450036.
    • (2015) Int J Neural Syst , vol.25 , pp. 1450036
    • Villar, J.R.1    González, S.2    Sedano, J.3
  • 49
    • 84955252586 scopus 로고    scopus 로고
    • A machine Learning Framework for Gait classification using inertial sensors: Application to Elderly, Post-Stroke and Huntington's Disease Patients
    • Mannini A, Trojaniello D, Cereatti A, et al. A machine Learning Framework for Gait classification using inertial sensors: application to Elderly, Post-Stroke and Huntington's Disease Patients. Sensors 2016;16:134.
    • (2016) Sensors , vol.16 , pp. 134
    • Mannini, A.1    Trojaniello, D.2    Cereatti, A.3
  • 50
    • 84961751887 scopus 로고    scopus 로고
    • Identifying neuroimaging markers of Motor Disability in acute stroke by machine Learning Techniques
    • Rehme AK, Volz LJ, Feis DL, et al. Identifying neuroimaging markers of Motor Disability in acute stroke by machine Learning Techniques. Cereb Cortex 2015;25:3046-56.
    • (2015) Cereb Cortex , vol.25 , pp. 3046-3056
    • Rehme, A.K.1    Volz, L.J.2    Feis, D.L.3
  • 51
    • 84944225767 scopus 로고    scopus 로고
    • Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1- weighted MRI scans
    • Griffis JC, Allendorfer JB, Szaflarski JP. Voxel-based gaussian naïve Bayes classification of ischemic stroke lesions in individual T1- weighted MRI scans. J Neurosci Methods 2016;257:97-108.
    • (2016) J Neurosci Methods , vol.257 , pp. 97-108
    • Griffis, J.C.1    Allendorfer, J.B.2    Szaflarski, J.P.3
  • 52
    • 84995784237 scopus 로고    scopus 로고
    • Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
    • Kamnitsas K, Ledig C, Newcombe VF, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 2017;36:61-78.
    • (2017) Med Image Anal , vol.36 , pp. 61-78
    • Kamnitsas, K.1    Ledig, C.2    Newcombe, V.F.3
  • 53
    • 84984706589 scopus 로고    scopus 로고
    • Decoding post-stroke motor function from structural brain imaging
    • Rondina JM, Filippone M, Girolami M, et al. Decoding post-stroke motor function from structural brain imaging. Neuroimage Clin 2016;12:372-80.
    • (2016) Neuroimage Clin , vol.12 , pp. 372-380
    • Rondina, J.M.1    Filippone, M.2    Girolami, M.3
  • 54
    • 84893472606 scopus 로고    scopus 로고
    • Can shape analysis differentiate free-floating internal carotid artery Thrombus from atherosclerotic plaque in patients evaluated with CTA?for stroke or transient ischemic attack?
    • Thornhill RE, Lum C, Jaberi A, et al. Can shape analysis differentiate free-floating internal carotid artery Thrombus from atherosclerotic plaque in patients evaluated with CTA?for stroke or transient ischemic attack? Acad Radiol 2014;21:345-54.
    • (2014) Acad Radiol , vol.21 , pp. 345-354
    • Thornhill, R.E.1    Lum, C.2    Jaberi, A.3
  • 55
    • 84898994009 scopus 로고    scopus 로고
    • Prediction of stroke thrombolysis outcome using CT brain machine learning
    • Bentley P, Ganesalingam J, Carlton Jones AL, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage Clin 2014;4:635-40.
    • (2014) Neuroimage Clin , vol.4 , pp. 635-640
    • Bentley, P.1    Ganesalingam, J.2    Carlton Jones, A.L.3
  • 56
    • 84894352200 scopus 로고    scopus 로고
    • Unifying acute stroke treatment guidelines for a Bayesian belief network
    • Love A, Arnold CW, El-Saden S, et al. Unifying acute stroke treatment guidelines for a bayesian belief network. Stud Health Technol Inform 2013;192:1012.
    • (2013) Stud Health Technol Inform , vol.192 , pp. 1012
    • Love, A.1    Arnold, C.W.2    El-Saden, S.3
  • 58
    • 84878625300 scopus 로고    scopus 로고
    • Acute ischaemic stroke prediction from physiological time series patterns
    • Zhang Q, Xie Y, Ye P, et al. Acute ischaemic stroke prediction from physiological time series patterns. Australas Med J 2013;6:280-6.
    • (2013) Australas Med J , vol.6 , pp. 280-286
    • Zhang, Q.1    Xie, Y.2    Ye, P.3
  • 59
    • 84895809445 scopus 로고    scopus 로고
    • Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy
    • Asadi H, Dowling R, Yan B, et al. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS One 2014;9:e88225.
    • (2014) PLoS One , vol.9 , pp. e88225
    • Asadi, H.1    Dowling, R.2    Yan, B.3
  • 60
    • 84992702454 scopus 로고    scopus 로고
    • Outcomes and complications after endovascular treatment of Brain Arteriovenous Malformations: A Prognostication Attempt using artificial Intelligence
    • Asadi H, Kok HK, Looby S, et al. Outcomes and complications after endovascular treatment of Brain Arteriovenous Malformations: a Prognostication Attempt using artificial Intelligence. World Neurosurg 2016;96:562-9.
    • (2016) World Neurosurg , vol.96 , pp. 562-569
    • Asadi, H.1    Kok, H.K.2    Looby, S.3
  • 61
    • 34547689814 scopus 로고    scopus 로고
    • Creating diagnostic scores using data-adaptive regression: An application to prediction of 30- day mortality among stroke victims in a rural hospital in India
    • Birkner MD, Kalantri S, Solao V, et al. Creating diagnostic scores using data-adaptive regression: an application to prediction of 30- day mortality among stroke victims in a rural hospital in India. Ther Clin Risk Manag 2007;3:475-84.
    • (2007) Ther Clin Risk Manag , vol.3 , pp. 475-484
    • Birkner, M.D.1    Kalantri, S.2    Solao, V.3
  • 62
    • 84964314234 scopus 로고    scopus 로고
    • Predicting discharge mortality after acute ischemic stroke using balanced data
    • Ho KC, Speier W, El-Saden S, et al. Predicting discharge mortality after acute ischemic stroke using balanced data. AMIA Annu Symp Proc 2014;2014:1787-96.
    • (2014) AMIA Annu Symp Proc , vol.2014 , pp. 1787-1796
    • Ho, K.C.1    Speier, W.2    El-Saden, S.3
  • 63
    • 84991463718 scopus 로고    scopus 로고
    • Automated quantification of cerebral edema following hemispheric infarction: Application of a machinelearning algorithm to evaluate CSF shifts on serial head CTs
    • Chen Y, Dhar R, Heitsch L, et al. Automated quantification of cerebral edema following hemispheric infarction: application of a machinelearning algorithm to evaluate CSF shifts on serial head CTs. Neuroimage Clin 2016;12:673-80.
    • (2016) Neuroimage Clin , vol.12 , pp. 673-680
    • Chen, Y.1    Dhar, R.2    Heitsch, L.3
  • 64
    • 84979516775 scopus 로고    scopus 로고
    • Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke
    • Siegel JS, Ramsey LE, Snyder AZ, et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci USA 2016;113:E4367-E4376.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. E4367-E4376
    • Siegel, J.S.1    Ramsey, L.E.2    Snyder, A.Z.3
  • 65
    • 84876140388 scopus 로고    scopus 로고
    • Predicting outcome and recovery after stroke with lesions extracted from MRI images
    • Hope TM, Seghier ML, Leff AP, et al. Predicting outcome and recovery after stroke with lesions extracted from MRI images. Neuroimage Clin 2013;2:424-33.
    • (2013) Neuroimage Clin , vol.2 , pp. 424-433
    • Hope, T.M.1    Seghier, M.L.2    Leff, A.P.3
  • 68
    • 85042054946 scopus 로고    scopus 로고
    • accessed 1 Jun 2017
    • Graham J. Artificial Intelligence, Machine Learning, and the FDA. 2016 https://www.forbes.com/sites/theapothecary/2016/08/19/artificial-intelligence-machine-learning-and-the-fda/#4aca26121aa1 (accessed 1 Jun 2017).
    • (2016) Artificial IntelligenceMachine Learning and the FDA
    • Graham, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.