-
1
-
-
84875646817
-
The inevitable application of big data to health care
-
Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA 2013;309:1351-2.
-
(2013)
JAMA
, vol.309
, pp. 1351-1352
-
-
Murdoch, T.B.1
Detsky, A.S.2
-
2
-
-
84975521209
-
How healthcare can refocus on its super-customers (patients, n =1) and customers (doctors and nurses) by leveraging lessons from amazon, uber, and watson
-
Kolker E, Özdemir V, Kolker E. How Healthcare can refocus on its Super-Customers (Patients, n =1) and Customers (Doctors and Nurses) by Leveraging Lessons from Amazon, Uber, and Watson. OMICS 2016;20:329-33.
-
(2016)
OMICS
, vol.20
, pp. 329-333
-
-
Kolker, E.1
Özdemir, V.2
Kolker, E.3
-
3
-
-
84889810890
-
Artificial intelligence in medicine and cardiac imaging: Harnessing big data and advanced computing to provide personalized medical diagnosis and treatment
-
Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep 2014;16:441.
-
(2014)
Curr Cardiol Rep
, vol.16
, pp. 441
-
-
Dilsizian, S.E.1
Siegel, E.L.2
-
5
-
-
85007524689
-
Adapting to Artificial Intelligence: Radiologists and pathologists as information specialists
-
Jha S, Topol EJ. Adapting to Artificial Intelligence: radiologists and pathologists as information specialists. JAMA 2016;316:2353-4.
-
(2016)
JAMA
, vol.316
, pp. 2353-2354
-
-
Jha, S.1
Topol, E.J.2
-
9
-
-
84871938838
-
Diagnostic errors in the intensive care unit: A systematic review of autopsy studies
-
Winters B, Custer J, Galvagno SM, et al. Diagnostic errors in the intensive care unit: a systematic review of autopsy studies. BMJ Qual Saf 2012;21:894-902.
-
(2012)
BMJ Qual Saf
, vol.21
, pp. 894-902
-
-
Winters, B.1
Custer, J.2
Galvagno, S.M.3
-
10
-
-
84884602537
-
Cognitive and system factors contributing to diagnostic errors in radiology
-
Lee CS, Nagy PG, Weaver SJ, et al. Cognitive and system factors contributing to diagnostic errors in radiology. AJR Am J Roentgenol 2013;201:611-7.
-
(2013)
AJR Am J Roentgenol
, vol.201
, pp. 611-617
-
-
Lee, C.S.1
Nagy, P.G.2
Weaver, S.J.3
-
11
-
-
84880181330
-
Using artificial intelligence to improve hospital inpatient care
-
Neill DB. Using artificial intelligence to improve hospital inpatient care. IEEE Intell Syst 2013;28:92-5.
-
(2013)
IEEE Intell Syst
, vol.28
, pp. 92-95
-
-
Neill, D.B.1
-
13
-
-
84955604605
-
Radiomics: Images are more than pictures, they are data
-
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278:563-77.
-
(2016)
Radiology
, vol.278
, pp. 563-577
-
-
Gillies, R.J.1
Kinahan, P.E.2
Hricak, H.3
-
14
-
-
84962585290
-
Integrated analysis of long noncoding RNA competing interactions reveals the potential role in progression of human gastric Cancer
-
Li CY, Liang GY, Yao WZ, et al. Integrated analysis of long noncoding RNA competing interactions reveals the potential role in progression of human gastric Cancer. Int J Oncol 2016;48:1965-76.
-
(2016)
Int J Oncol
, vol.48
, pp. 1965-1976
-
-
Li, C.Y.1
Liang, G.Y.2
Yao, W.Z.3
-
15
-
-
77955289073
-
Electrodiagnosis support system for localizing neural injury in an upper limb
-
Shin H, Kim KH, Song C, et al. Electrodiagnosis support system for localizing neural injury in an upper limb. J Am Med Inform Assoc 2010;17:345-7.
-
(2010)
J Am Med Inform Assoc
, vol.17
, pp. 345-347
-
-
Shin, H.1
Kim, K.H.2
Song, C.3
-
16
-
-
84929514278
-
Computer based extraction of phenoptypic features of human congenital anomalies from the digital literature with natural language processing techniques
-
Karakülah G, Dicle O, Koşaner O, et al. Computer based extraction of phenoptypic features of human congenital anomalies from the digital literature with natural language processing techniques. Stud Health Technol Inform 2014;205:570-4.
-
(2014)
Stud Health Technol Inform
, vol.205
, pp. 570-574
-
-
Karakülah, G.1
Dicle, O.2
Koşaner, O.3
-
17
-
-
84957921914
-
Machine learning and the profession of medicine
-
Darcy AM, Louie AK, Roberts LW. Machine Learning and the Profession of Medicine. JAMA 2016;315:551-2.
-
(2016)
JAMA
, vol.315
, pp. 551-552
-
-
Darcy, A.M.1
Louie, A.K.2
Roberts, L.W.3
-
18
-
-
80052063328
-
Automated identification of postoperative complications within an electronic medical record using natural language processing
-
Murff HJ, FitzHenry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 2011;306:848-55.
-
(2011)
JAMA
, vol.306
, pp. 848-855
-
-
Murff, H.J.1
FitzHenry, F.2
Matheny, M.E.3
-
19
-
-
85050480482
-
Abstract S6-07: Double blinded validation study to assess performance of IBM artificial intelligence platform, Watson for oncology in comparison with manipal multidisciplinary tumour board ? First study of 638 breast Cancer cases
-
Somashekhar SP, Kumarc R, Rauthan A, et al. Abstract S6-07: double blinded validation study to assess performance of IBM artificial intelligence platform, Watson for oncology in comparison with manipal multidisciplinary tumour board ? first study of 638 breast Cancer cases. Cancer Res 2017;77(4 Suppl):S6-07.
-
(2017)
Cancer Res
, vol.77
, pp. S6-S7
-
-
Somashekhar, S.P.1
Kumarc, R.2
Rauthan, A.3
-
20
-
-
85016143105
-
Dermatologist-level classification of skin Cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin Cancer with deep neural networks. Nature 2017;542:115-8.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
21
-
-
84969260549
-
Restoring cortical control of functional movement in a human with quadriplegia
-
Bouton CE, Shaikhouni A, Annetta NV, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 2016;533:247-50.
-
(2016)
Nature
, vol.533
, pp. 247-250
-
-
Bouton, C.E.1
Shaikhouni, A.2
Annetta, N.V.3
-
22
-
-
85025679781
-
Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation
-
Farina D, Vujaklija I, Sartori M, et al. Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nat Biomed Eng 2017;1:0025.
-
(2017)
Nat Biomed Eng
, vol.1
, pp. 0025
-
-
Farina, D.1
Vujaklija, I.2
Sartori, M.3
-
25
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for detection of Diabetic Retinopathy in retinal fundus photographs. JAMA 2016;316:2402-10.
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
30
-
-
84857000430
-
Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review
-
Orru G, Pettersson-Yeo W, Marquand AF, et al. Using support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 2012;36:1140-52.
-
(2012)
Neurosci Biobehav Rev
, vol.36
, pp. 1140-1152
-
-
Orru, G.1
Pettersson-Yeo, W.2
Marquand, A.F.3
-
32
-
-
84922781392
-
Early diagnosis of Alzheimer?s disease based on partial least squares principal component analysis and support vector machine using segmented MRI images
-
Khedher L, Ramrez J, Grriz JM, et al. Early diagnosis of Alzheimer?s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing 2015;151:139-50.
-
(2015)
Neurocomputing
, vol.151
, pp. 139-150
-
-
Khedher, L.1
Ramrez, J.2
Grriz, J.M.3
-
33
-
-
85050494375
-
-
In: Mirtskhulava L, Wong J, Al-Majeed S, Pearce G, et al; eds. Artificial Neural Network Model in Stroke diagnosis. modelling and simulation (UKSim), 2015 17th UKSim-AMSS International Conference on: IEEE, 2015.
-
(2015)
Artificial Neural Network Model in Stroke Diagnosis. Modelling and Simulation (UKSim), 2015 17th UKSim-AMSS International Conference on
-
-
Mirtskhulava, L.1
Wong, J.2
Al-Majeed, S.3
Pearce, G.4
-
34
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
Khan J, Wei JS, Ringnér M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001;7:673-9.
-
(2001)
Nat Med
, vol.7
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringnér, M.3
-
35
-
-
84902456334
-
Computer-aided detection of breast Cancer on mammograms: A swarm intelligence optimized wavelet neural network approach
-
Dheeba J, Albert Singh N, Tamil Selvi S. Computer-aided detection of breast Cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J Biomed Inform 2014;49:45-52.
-
(2014)
J Biomed Inform
, vol.49
, pp. 45-52
-
-
Dheeba, J.1
Albert Singh, N.2
Tamil Selvi, S.3
-
36
-
-
84942867128
-
Computer-aided diagnosis of Parkinson's disease using enhanced probabilistic neural network
-
Hirschauer TJ, Adeli H, Buford JA. Computer-Aided diagnosis of Parkinson's Disease Using Enhanced Probabilistic Neural Network. J Med Syst 2015;39:179.
-
(2015)
J Med Syst
, vol.39
, pp. 179
-
-
Hirschauer, T.J.1
Adeli, H.2
Buford, J.A.3
-
39
-
-
85050495043
-
-
accessed 1 Jun 2017
-
Research BA. Caffe. 2017. http://caffe.berkeleyvision.org/(accessed 1 Jun 2017).
-
(2017)
Caffe
-
-
Research, B.A.1
-
42
-
-
85011903621
-
Mining peripheral arterial disease cases from narrative clinical notes using natural language processing
-
Afzal N, Sohn S, Abram S, et al. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing. J Vasc Surg 2017;65:1753-61.
-
(2017)
J Vasc Surg
, vol.65
, pp. 1753-1761
-
-
Afzal, N.1
Sohn, S.2
Abram, S.3
-
43
-
-
0033777731
-
Automatic detection of acute bacterial pneumonia from chest X-ray reports
-
Fiszman M, Chapman WW, Aronsky D, et al. Automatic detection of acute bacterial pneumonia from chest X-ray reports. J Am Med Inform Assoc 2000;7:593-604.
-
(2000)
J Am Med Inform Assoc
, vol.7
, pp. 593-604
-
-
Fiszman, M.1
Chapman, W.W.2
Aronsky, D.3
-
44
-
-
85011585991
-
Using electronic medical record data to report laboratory adverse events
-
Miller TP, Li Y, Getz KD, et al. Using electronic medical record data to report laboratory adverse events. Br J Haematol 2017;177:283-6.
-
(2017)
Br J Haematol
, vol.177
, pp. 283-286
-
-
Miller, T.P.1
Li, Y.2
Getz, K.D.3
-
45
-
-
85009080828
-
Large-scale identification of patients with cerebral aneurysms using natural language processing
-
Castro VM, Dligach D, Finan S, et al. Large-scale identification of patients with cerebral aneurysms using natural language processing. Neurology 2017;88:164-8.
-
(2017)
Neurology
, vol.88
, pp. 164-168
-
-
Castro, V.M.1
Dligach, D.2
Finan, S.3
-
46
-
-
73449144135
-
Stroke biomarkers: Progress and challenges for diagnosis, prognosis, differentiation, and treatment
-
Saenger AK, Christenson RH. Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin Chem 2010;56:21-33.
-
(2010)
Clin Chem
, vol.56
, pp. 21-33
-
-
Saenger, A.K.1
Christenson, R.H.2
-
47
-
-
66849126215
-
Role of health insurance in averting economic hardship in families after acute stroke in China
-
Heeley E, Anderson CS, Huang Y, et al. Role of health insurance in averting economic hardship in families after acute stroke in China. Stroke 2009;40:2149-56.
-
(2009)
Stroke
, vol.40
, pp. 2149-2156
-
-
Heeley, E.1
Anderson, C.S.2
Huang, Y.3
-
48
-
-
84929964917
-
Improving human activity recognition and its application in early stroke diagnosis
-
Villar JR, González S, Sedano J, et al. Improving human activity recognition and its application in early stroke diagnosis. Int J Neural Syst 2015;25:1450036.
-
(2015)
Int J Neural Syst
, vol.25
, pp. 1450036
-
-
Villar, J.R.1
González, S.2
Sedano, J.3
-
49
-
-
84955252586
-
A machine Learning Framework for Gait classification using inertial sensors: Application to Elderly, Post-Stroke and Huntington's Disease Patients
-
Mannini A, Trojaniello D, Cereatti A, et al. A machine Learning Framework for Gait classification using inertial sensors: application to Elderly, Post-Stroke and Huntington's Disease Patients. Sensors 2016;16:134.
-
(2016)
Sensors
, vol.16
, pp. 134
-
-
Mannini, A.1
Trojaniello, D.2
Cereatti, A.3
-
50
-
-
84961751887
-
Identifying neuroimaging markers of Motor Disability in acute stroke by machine Learning Techniques
-
Rehme AK, Volz LJ, Feis DL, et al. Identifying neuroimaging markers of Motor Disability in acute stroke by machine Learning Techniques. Cereb Cortex 2015;25:3046-56.
-
(2015)
Cereb Cortex
, vol.25
, pp. 3046-3056
-
-
Rehme, A.K.1
Volz, L.J.2
Feis, D.L.3
-
51
-
-
84944225767
-
Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1- weighted MRI scans
-
Griffis JC, Allendorfer JB, Szaflarski JP. Voxel-based gaussian naïve Bayes classification of ischemic stroke lesions in individual T1- weighted MRI scans. J Neurosci Methods 2016;257:97-108.
-
(2016)
J Neurosci Methods
, vol.257
, pp. 97-108
-
-
Griffis, J.C.1
Allendorfer, J.B.2
Szaflarski, J.P.3
-
52
-
-
84995784237
-
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
-
Kamnitsas K, Ledig C, Newcombe VF, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 2017;36:61-78.
-
(2017)
Med Image Anal
, vol.36
, pp. 61-78
-
-
Kamnitsas, K.1
Ledig, C.2
Newcombe, V.F.3
-
53
-
-
84984706589
-
Decoding post-stroke motor function from structural brain imaging
-
Rondina JM, Filippone M, Girolami M, et al. Decoding post-stroke motor function from structural brain imaging. Neuroimage Clin 2016;12:372-80.
-
(2016)
Neuroimage Clin
, vol.12
, pp. 372-380
-
-
Rondina, J.M.1
Filippone, M.2
Girolami, M.3
-
54
-
-
84893472606
-
Can shape analysis differentiate free-floating internal carotid artery Thrombus from atherosclerotic plaque in patients evaluated with CTA?for stroke or transient ischemic attack?
-
Thornhill RE, Lum C, Jaberi A, et al. Can shape analysis differentiate free-floating internal carotid artery Thrombus from atherosclerotic plaque in patients evaluated with CTA?for stroke or transient ischemic attack? Acad Radiol 2014;21:345-54.
-
(2014)
Acad Radiol
, vol.21
, pp. 345-354
-
-
Thornhill, R.E.1
Lum, C.2
Jaberi, A.3
-
55
-
-
84898994009
-
Prediction of stroke thrombolysis outcome using CT brain machine learning
-
Bentley P, Ganesalingam J, Carlton Jones AL, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage Clin 2014;4:635-40.
-
(2014)
Neuroimage Clin
, vol.4
, pp. 635-640
-
-
Bentley, P.1
Ganesalingam, J.2
Carlton Jones, A.L.3
-
56
-
-
84894352200
-
Unifying acute stroke treatment guidelines for a Bayesian belief network
-
Love A, Arnold CW, El-Saden S, et al. Unifying acute stroke treatment guidelines for a bayesian belief network. Stud Health Technol Inform 2013;192:1012.
-
(2013)
Stud Health Technol Inform
, vol.192
, pp. 1012
-
-
Love, A.1
Arnold, C.W.2
El-Saden, S.3
-
58
-
-
84878625300
-
Acute ischaemic stroke prediction from physiological time series patterns
-
Zhang Q, Xie Y, Ye P, et al. Acute ischaemic stroke prediction from physiological time series patterns. Australas Med J 2013;6:280-6.
-
(2013)
Australas Med J
, vol.6
, pp. 280-286
-
-
Zhang, Q.1
Xie, Y.2
Ye, P.3
-
59
-
-
84895809445
-
Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy
-
Asadi H, Dowling R, Yan B, et al. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS One 2014;9:e88225.
-
(2014)
PLoS One
, vol.9
, pp. e88225
-
-
Asadi, H.1
Dowling, R.2
Yan, B.3
-
60
-
-
84992702454
-
Outcomes and complications after endovascular treatment of Brain Arteriovenous Malformations: A Prognostication Attempt using artificial Intelligence
-
Asadi H, Kok HK, Looby S, et al. Outcomes and complications after endovascular treatment of Brain Arteriovenous Malformations: a Prognostication Attempt using artificial Intelligence. World Neurosurg 2016;96:562-9.
-
(2016)
World Neurosurg
, vol.96
, pp. 562-569
-
-
Asadi, H.1
Kok, H.K.2
Looby, S.3
-
61
-
-
34547689814
-
Creating diagnostic scores using data-adaptive regression: An application to prediction of 30- day mortality among stroke victims in a rural hospital in India
-
Birkner MD, Kalantri S, Solao V, et al. Creating diagnostic scores using data-adaptive regression: an application to prediction of 30- day mortality among stroke victims in a rural hospital in India. Ther Clin Risk Manag 2007;3:475-84.
-
(2007)
Ther Clin Risk Manag
, vol.3
, pp. 475-484
-
-
Birkner, M.D.1
Kalantri, S.2
Solao, V.3
-
62
-
-
84964314234
-
Predicting discharge mortality after acute ischemic stroke using balanced data
-
Ho KC, Speier W, El-Saden S, et al. Predicting discharge mortality after acute ischemic stroke using balanced data. AMIA Annu Symp Proc 2014;2014:1787-96.
-
(2014)
AMIA Annu Symp Proc
, vol.2014
, pp. 1787-1796
-
-
Ho, K.C.1
Speier, W.2
El-Saden, S.3
-
63
-
-
84991463718
-
Automated quantification of cerebral edema following hemispheric infarction: Application of a machinelearning algorithm to evaluate CSF shifts on serial head CTs
-
Chen Y, Dhar R, Heitsch L, et al. Automated quantification of cerebral edema following hemispheric infarction: application of a machinelearning algorithm to evaluate CSF shifts on serial head CTs. Neuroimage Clin 2016;12:673-80.
-
(2016)
Neuroimage Clin
, vol.12
, pp. 673-680
-
-
Chen, Y.1
Dhar, R.2
Heitsch, L.3
-
64
-
-
84979516775
-
Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke
-
Siegel JS, Ramsey LE, Snyder AZ, et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci USA 2016;113:E4367-E4376.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. E4367-E4376
-
-
Siegel, J.S.1
Ramsey, L.E.2
Snyder, A.Z.3
-
65
-
-
84876140388
-
Predicting outcome and recovery after stroke with lesions extracted from MRI images
-
Hope TM, Seghier ML, Leff AP, et al. Predicting outcome and recovery after stroke with lesions extracted from MRI images. Neuroimage Clin 2013;2:424-33.
-
(2013)
Neuroimage Clin
, vol.2
, pp. 424-433
-
-
Hope, T.M.1
Seghier, M.L.2
Leff, A.P.3
-
68
-
-
85042054946
-
-
accessed 1 Jun 2017
-
Graham J. Artificial Intelligence, Machine Learning, and the FDA. 2016 https://www.forbes.com/sites/theapothecary/2016/08/19/artificial-intelligence-machine-learning-and-the-fda/#4aca26121aa1 (accessed 1 Jun 2017).
-
(2016)
Artificial IntelligenceMachine Learning and the FDA
-
-
Graham, J.1
|