메뉴 건너뛰기




Volumn 69, Issue 2, 2018, Pages 120-135

Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology

(23)  Tang, An a,b   Tam, Roger c   Cadrin Chênevert, Alexandre d   Guest, Will c   Chong, Jaron e   Barfett, Joseph f   Chepelev, Leonid g   Cairns, Robyn c   Mitchell, J Ross h   Cicero, Mark D f   Poudrette, Manuel Gaudreau i   Jaremko, Jacob L j   Reinhold, Caroline e   Gallix, Benoit e   Gray, Bruce f   Geis, Raym k   O'Connell, Timothy l   Babyn, Paul l   Koff, David l   Ferguson, Darren l   more..


Author keywords

Artificial intelligence; Deep learning; Healthcare; Imaging; Machine learning; Medicine; Quality improvement; Radiology

Indexed keywords

ADOPTION; ADULT; ARTICLE; ARTIFICIAL INTELLIGENCE; CANADA; HUMAN; LEARNING ALGORITHM; LIFELONG LEARNING; NOMENCLATURE; PATIENT CARE; POPULATION HEALTH; RADIOLOGIST; RADIOLOGY; SPEECH DISCRIMINATION; TOTAL QUALITY MANAGEMENT; WORKFLOW; MEDICAL SOCIETY; PROCEDURES;

EID: 85045189457     PISSN: 08465371     EISSN: 14882361     Source Type: Journal    
DOI: 10.1016/j.carj.2018.02.002     Document Type: Review
Times cited : (343)

References (59)
  • 1
    • 84944735469 scopus 로고    scopus 로고
    • Deep Learning
    • 1st ed. MIT Press Cambridge, MA
    • Goodfellow, I., Bengio, Y., Courville, A., Deep Learning. 1st ed., 2016, MIT Press, Cambridge, MA.
    • (2016)
    • Goodfellow, I.1    Bengio, Y.2    Courville, A.3
  • 2
    • 85046312225 scopus 로고    scopus 로고
    • Merriam-Webster definition of artificial intelligence. Available at: Accessed January 28.
    • Merriam-Webster definition of artificial intelligence. Available at: https://www.merriam-webster.com/dictionary/artificial intelligence. Accessed January 28, 2018.
    • (2018)
  • 3
    • 85046314618 scopus 로고    scopus 로고
    • Guidance for Industry and Food and Drug Administration Staff - Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data - Premarket Notification [510(k)] Submissions. 2017. Available at: Accessed January 28.
    • Guidance for Industry and Food and Drug Administration Staff - Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data - Premarket Notification [510(k)] Submissions. 2017. Available at: https://www.fda.gov/MedicalDevices/ucm187249.htm. Accessed January 28, 2018.
    • (2018)
  • 4
    • 0001201756 scopus 로고
    • Some Studies in Machine Learning Using the Game of Checkers
    • Arthur, S., Some Studies in Machine Learning Using the Game of Checkers. IBM J Res Dev 3 (1959), 535–554.
    • (1959) IBM J Res Dev , vol.3 , pp. 535-554
    • Arthur, S.1
  • 5
    • 85046316130 scopus 로고    scopus 로고
    • Google. Machine learning. Glossary. Available at: Accessed January 28
    • Google. Machine learning. Glossary. Available at: https://developers.google.com/machine-learning/glossary/#r. Accessed January 28, 2018.
    • (2018)
  • 6
    • 85046320240 scopus 로고    scopus 로고
    • A statistical learning/pattern recognition glossary. Available at: Accessed January 28
    • Minka T. A statistical learning/pattern recognition glossary. Available at: http://alumni.media.mit.edu/∼tpminka/statlearn/glossary/. Accessed January 28, 2018.
    • (2018)
    • Minka, T.1
  • 7
    • 33846092536 scopus 로고    scopus 로고
    • A proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955
    • McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E., A proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine, 27, 2006, 12.
    • (2006) AI Magazine , vol.27 , pp. 12
    • McCarthy, J.1    Minsky, M.L.2    Rochester, N.3    Shannon, C.E.4
  • 8
    • 85046311478 scopus 로고    scopus 로고
    • What is machine learning? Techemergence. 2017. Available at: Accessed January 22
    • Faggella D. What is machine learning? Techemergence. 2017. Available at: https://www.techemergence.com/what-is-machine-learning/. Accessed January 22, 2018.
    • (2018)
    • Faggella, D.1
  • 9
    • 85046318831 scopus 로고    scopus 로고
    • Easy Solutions, Inc. Building AI applications using deep learning. Available at: Accessed January 28
    • Bahnsen AC. Easy Solutions, Inc. Building AI applications using deep learning. Available at: http://blog.easysol.net/building-ai-applications. Accessed January 28, 2018.
    • (2018)
    • Bahnsen, A.C.1
  • 11
    • 85034600056 scopus 로고    scopus 로고
    • Deep learning: a primer for radiologists
    • Chartrand, G., Cheng, P.M., Vorontsov, E., et al. Deep learning: a primer for radiologists. Radiographics 37 (2017), 2113–2131.
    • (2017) Radiographics , vol.37 , pp. 2113-2131
    • Chartrand, G.1    Cheng, P.M.2    Vorontsov, E.3
  • 12
    • 85046312460 scopus 로고    scopus 로고
    • of Radiologists. Resources on AI, machine learning, and deep learning. Available at: Accessed January 28
    • Canadian Association of Radiologists. Resources on AI, machine learning, and deep learning. Available at: https://car.ca/innovation/artificial-intelligence/ai-resources/. Accessed January 28, 2018.
    • (2018)
    • Canadian Association1
  • 13
    • 85046316203 scopus 로고    scopus 로고
    • Use case development. Available at: Accessed January 28
    • American College of Radiology Data Science Institute. Use case development. Available at: http://acrdsi.org/use-case-development.html. Accessed January 28, 2018.
    • (2018)
    • American College of Radiology Data Science Institute1
  • 14
    • 84857037061 scopus 로고    scopus 로고
    • Radiomics: extracting more information from medical images using advanced feature analysis
    • Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48 (2012), 441–446.
    • (2012) Eur J Cancer , vol.48 , pp. 441-446
    • Lambin, P.1    Rios-Velazquez, E.2    Leijenaar, R.3
  • 15
    • 85046315047 scopus 로고    scopus 로고
    • LiTS: liver tumor segmentation challenge. 2017. Available at: Accessed January 28
    • Christ PF. LiTS: liver tumor segmentation challenge. 2017. Available at: https://competitions.codalab.org/competitions/17094. Accessed January 28, 2018.
    • (2018)
    • Christ, P.F.1
  • 16
    • 85046311803 scopus 로고    scopus 로고
    • Lung nodule risk stratification using CNNs: can we generalize from screening training data? Conference on Machine Intelligence in Medical Imaging. September 26–27; Baltimore, MD.
    • Pickup LC, Gleeson F, Talwar A, Kadir T. Lung nodule risk stratification using CNNs: can we generalize from screening training data? Conference on Machine Intelligence in Medical Imaging. September 26–27, 2017; Baltimore, MD.
    • (2017)
    • Pickup, L.C.1    Gleeson, F.2    Talwar, A.3    Kadir, T.4
  • 17
    • 85046316776 scopus 로고    scopus 로고
    • One pixel attack for fooling deep neural networks
    • [Epub ahead of print]
    • Su, J., Vargas, D.V., Kouichi, S., One pixel attack for fooling deep neural networks. arXiv, 2017 [Epub ahead of print].
    • (2017) arXiv
    • Su, J.1    Vargas, D.V.2    Kouichi, S.3
  • 18
    • 85055096358 scopus 로고    scopus 로고
    • Robust physical-world attacks on deep learning models
    • [Epub ahead of print]
    • Evtimov, I., Eykholt, K., Fernandes, E., et al. Robust physical-world attacks on deep learning models. arXiv, 2017 [Epub ahead of print].
    • (2017) arXiv
    • Evtimov, I.1    Eykholt, K.2    Fernandes, E.3
  • 19
    • 84961111700 scopus 로고    scopus 로고
    • Revised recommendations of the Consortium of MS Centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis
    • Traboulsee, A., Simon, J.H., Stone, L., et al. Revised recommendations of the Consortium of MS Centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. AJNR Am J Neuroradiol 37 (2016), 394–401.
    • (2016) AJNR Am J Neuroradiol , vol.37 , pp. 394-401
    • Traboulsee, A.1    Simon, J.H.2    Stone, L.3
  • 20
    • 84948809033 scopus 로고    scopus 로고
    • STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies
    • Bossuyt, P.M., Reitsma, J.B., Bruns, D.E., et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Radiology 277 (2015), 826–832.
    • (2015) Radiology , vol.277 , pp. 826-832
    • Bossuyt, P.M.1    Reitsma, J.B.2    Bruns, D.E.3
  • 21
    • 84923923813 scopus 로고    scopus 로고
    • Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement
    • Collins, G.S., Reitsma, J.B., Altman, D.G., Moons, K.G., Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med 162 (2015), 55–63.
    • (2015) Ann Intern Med , vol.162 , pp. 55-63
    • Collins, G.S.1    Reitsma, J.B.2    Altman, D.G.3    Moons, K.G.4
  • 22
    • 85043275243 scopus 로고    scopus 로고
    • Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks
    • Springer International Cham, Switzerland
    • Kamnitsas, K., Baumgartner, C., Ledig, C., et al. Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks. 2017, Springer International, Cham, Switzerland.
    • (2017)
    • Kamnitsas, K.1    Baumgartner, C.2    Ledig, C.3
  • 23
    • 85046321545 scopus 로고    scopus 로고
    • Canada needs to nurture local tech champions and protect research, says AI pioneer. National Post. 2017. Available at: Accessed January 28.
    • Canada needs to nurture local tech champions and protect research, says AI pioneer. National Post. 2017. Available at: http://nationalpost.com/pmn/news-pmn/canada-news-pmn/canada-needs-to-nurture-local-tech-champions-and-protect-research-says-ai-pioneer. Accessed January 28, 2018.
    • (2018)
  • 24
    • 85046311901 scopus 로고    scopus 로고
    • : Canada's early start in artificial intelligence set it up to be today's global powerhouse. Financial Post. 2017. Available at: Accessed January 28.
    • Deveau D. Revolution AI: Canada's early start in artificial intelligence set it up to be today's global powerhouse. Financial Post. 2017. Available at: http://business.financialpost.com/entrepreneur/0123-biz-dd-intelligence. Accessed January 28, 2018.
    • (2018)
    • Deveau, D.1    Revolution, A.I.2
  • 25
    • 85046320464 scopus 로고    scopus 로고
    • Canada's health infostructure. 2004. Available at: Accessed January 28.
    • Government of Canada. Canada's health infostructure. 2004. Available at: https://www.canada.ca/en/health-canada/services/health-care-system/ehealth/canada-health-infostructure.html. Accessed January 28, 2018.
    • (2018)
    • Government of Canada1
  • 26
    • 85046318515 scopus 로고    scopus 로고
    • Canada Health Infoway. Standards centre. Available at: Accessed February 6
    • Canada Health Infoway. Standards centre. Available at: https://infocentral.infoway-inforoute.ca/en/standards/standards-selection-framework/standards-ssf. Accessed February 6, 2018.
    • (2018)
  • 27
    • 85017419586 scopus 로고    scopus 로고
    • Deep learning of brain images and its application to multiple sclerosis
    • G. Wu D. Shen M. Sabuncu Elsevier New York
    • Brosch, T., Yoo, Y., Tang, L., Tam, R., Deep learning of brain images and its application to multiple sclerosis. Wu, G., Shen, D., Sabuncu, M., (eds.) Machine Learning and Medical Imaging, 2016, Elsevier, New York, 69–96.
    • (2016) Machine Learning and Medical Imaging , pp. 69-96
    • Brosch, T.1    Yoo, Y.2    Tang, L.3    Tam, R.4
  • 28
    • 85046316598 scopus 로고    scopus 로고
    • Radiology Informatics Lab at Stanford Medicine. Medical ImageNet. 2016. Available at: Accessed January 28.
    • Radiology Informatics Lab at Stanford Medicine. Medical ImageNet. 2016. Available at: http://langlotzlab.stanford.edu/projects/medical-image-net/. Accessed January 28, 2018.
    • (2018)
  • 29
    • 85046318420 scopus 로고    scopus 로고
    • Digital Imaging and Communications in Medicine. Available at: Accessed January 28, 2018.
    • DICOM. Digital Imaging and Communications in Medicine. Available at: https://www.dicomstandard.org/. Accessed January 28, 2018.
    • DICOM1
  • 30
    • 85046320731 scopus 로고    scopus 로고
    • 3.6 2018a - data dictionary. 2018. Available at: Accessed January 28.
    • DICOM PS3.6 2018a - data dictionary. 2018. Available at: http://dicom.nema.org/medical/dicom/current/output/html/part06.html. Accessed January 28, 2018.
    • (2018)
    • DICOM, P.S.1
  • 31
    • 85046315007 scopus 로고    scopus 로고
    • Practical implications of sharing data: a primer on data privacy, anonymization, and de-identification. Paper 1884–2015. SAS Global Forum Proceedings 2015. Available at: Accessed January 28.
    • Nelson GS. Practical implications of sharing data: a primer on data privacy, anonymization, and de-identification. Paper 1884–2015. SAS Global Forum Proceedings 2015. Available at: https://support.sas.com/resources/papers/proceedings15/1884-2015.pdf. Accessed January 28, 2018.
    • (2018)
    • Nelson, G.S.1
  • 32
    • 85046318746 scopus 로고    scopus 로고
    • Council of Canadian Academies. Accessing Health and Health-Related Data in Canada: The Expert Panel on Timely Access to Health and Social Data for Health Research and Health System Innovation. 2015. Available at: Accessed January 28.
    • Council of Canadian Academies. Accessing Health and Health-Related Data in Canada: The Expert Panel on Timely Access to Health and Social Data for Health Research and Health System Innovation. 2015. Available at: http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/Health-data/HealthDataFullReportEn.pdf. Accessed January 28, 2018.
    • (2018)
  • 34
    • 85046318971 scopus 로고    scopus 로고
    • Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
    • Springer New York
    • Cardoso, M.J., Arbel, T., Lee, S.L., et al. Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. 2017, Springer, New York.
    • (2017)
    • Cardoso, M.J.1    Arbel, T.2    Lee, S.L.3
  • 35
    • 85046321718 scopus 로고    scopus 로고
    • Comparison of deep learning software. Available at: Accessed January 28
    • Comparison of deep learning software. Available at: https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software. Accessed January 28, 2018.
    • (2018)
  • 36
    • 85046321725 scopus 로고    scopus 로고
    • Top 10 deep learning frameworks. Packt Hub. 2017. Available at: Accessed January 28
    • Varangaonkar A. Top 10 deep learning frameworks. Packt Hub. 2017. Available at: https://datahub.packtpub.com/deep-learning/top-10-deep-learning-frameworks/. Accessed January 28, 2018.
    • (2018)
    • Varangaonkar, A.1
  • 37
    • 84926444656 scopus 로고    scopus 로고
    • Docker: lightweight linux containers for consistent development and deployment
    • Merkel, D., Docker: lightweight linux containers for consistent development and deployment. Linux J, 2014, 2014, 2.
    • (2014) Linux J , vol.2014 , pp. 2
    • Merkel, D.1
  • 38
    • 85046320604 scopus 로고    scopus 로고
    • Compute Canada. Available at: Accessed February 6.
    • Compute Canada. Available at: https://www.computecanada.ca/research-showcase/. Accessed February 6, 2018.
    • (2018)
  • 39
    • 33646483378 scopus 로고    scopus 로고
    • Comparative accuracy: assessing new tests against existing diagnostic pathways
    • Bossuyt, P.M., Irwig, L., Craig, J., Glasziou, P., Comparative accuracy: assessing new tests against existing diagnostic pathways. BMJ 332 (2006), 1089–1092.
    • (2006) BMJ , vol.332 , pp. 1089-1092
    • Bossuyt, P.M.1    Irwig, L.2    Craig, J.3    Glasziou, P.4
  • 40
    • 85013092765 scopus 로고    scopus 로고
    • Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer
    • Becker, A.S., Marcon, M., Ghafoor, S., Wurnig, M.C., Frauenfelder, T., Boss, A., Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol 52 (2017), 434–440.
    • (2017) Invest Radiol , vol.52 , pp. 434-440
    • Becker, A.S.1    Marcon, M.2    Ghafoor, S.3    Wurnig, M.C.4    Frauenfelder, T.5    Boss, A.6
  • 41
    • 84955604605 scopus 로고    scopus 로고
    • Radiomics: images are more than pictures, they are data
    • Gillies, R.J., Kinahan, P.E., Hricak, H., Radiomics: images are more than pictures, they are data. Radiology 278 (2016), 563–577.
    • (2016) Radiology , vol.278 , pp. 563-577
    • Gillies, R.J.1    Kinahan, P.E.2    Hricak, H.3
  • 42
    • 85046312656 scopus 로고    scopus 로고
    • Reporting and data systems. Available at: Accessed January 28
    • American College of Radiology. Reporting and data systems. Available at: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems. Accessed January 28, 2018.
    • (2018)
    • American College of Radiology1
  • 43
    • 84965134347 scopus 로고    scopus 로고
    • Natural language processing in radiology: a systematic review
    • Pons, E., Braun, L.M., Hunink, M.G., Kors, J.A., Natural language processing in radiology: a systematic review. Radiology 279 (2016), 329–343.
    • (2016) Radiology , vol.279 , pp. 329-343
    • Pons, E.1    Braun, L.M.2    Hunink, M.G.3    Kors, J.A.4
  • 44
    • 85021126291 scopus 로고    scopus 로고
    • Creation of an open framework for point-of-care computer-assisted reporting and decision support tools for radiologists
    • Alkasab, T.K., Bizzo, B.C., Berland, L.L., Nair, S., Pandharipande, P.V., Harvey, H.B., Creation of an open framework for point-of-care computer-assisted reporting and decision support tools for radiologists. J Am Coll Radiol 14 (2017), 1184–1189.
    • (2017) J Am Coll Radiol , vol.14 , pp. 1184-1189
    • Alkasab, T.K.1    Bizzo, B.C.2    Berland, L.L.3    Nair, S.4    Pandharipande, P.V.5    Harvey, H.B.6
  • 45
    • 85043729011 scopus 로고    scopus 로고
    • ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
    • [Epub ahead of print]
    • Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M., ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. arXiv, 2017 [Epub ahead of print].
    • (2017) arXiv
    • Wang, X.1    Peng, Y.2    Lu, L.3    Lu, Z.4    Bagheri, M.5    Summers, R.M.6
  • 46
    • 84928096517 scopus 로고    scopus 로고
    • Advanced search of the electronic medical record: augmenting safety and efficiency in radiology
    • Zalis, M., Harris, M., Advanced search of the electronic medical record: augmenting safety and efficiency in radiology. J Am Coll Radiol 7 (2010), 625–633.
    • (2010) J Am Coll Radiol , vol.7 , pp. 625-633
    • Zalis, M.1    Harris, M.2
  • 47
    • 84886473072 scopus 로고    scopus 로고
    • TCIA: an information resource to enable open science
    • Prior, F.W., Clark, K., Commean, P., et al. TCIA: an information resource to enable open science. Conf Proc IEEE Eng Med Biol Soc 2013 (2013), 1282–1285.
    • (2013) Conf Proc IEEE Eng Med Biol Soc , vol.2013 , pp. 1282-1285
    • Prior, F.W.1    Clark, K.2    Commean, P.3
  • 48
    • 84882310107 scopus 로고    scopus 로고
    • The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud
    • Wolstencroft, K., Haines, R., Fellows, D., et al. The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res 41 (2013), W557–W561.
    • (2013) Nucleic Acids Res , vol.41 , pp. W557-W561
    • Wolstencroft, K.1    Haines, R.2    Fellows, D.3
  • 49
    • 84921861095 scopus 로고    scopus 로고
    • The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery
    • Dumontier, M., Baker, C.J., Baran, J., et al. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery. J Biomed Semantics, 5, 2014, 14.
    • (2014) J Biomed Semantics , vol.5 , pp. 14
    • Dumontier, M.1    Baker, C.J.2    Baran, J.3
  • 50
    • 34250311582 scopus 로고    scopus 로고
    • RadLex: a new method for indexing online educational materials
    • Langlotz, C.P., RadLex: a new method for indexing online educational materials. Radiographics 26 (2006), 1595–1597.
    • (2006) Radiographics , vol.26 , pp. 1595-1597
    • Langlotz, C.P.1
  • 51
    • 85046320784 scopus 로고    scopus 로고
    • Creative Destruction Lab. Geoff Hinton: on radiology. 2016. Available at: Accessed January 28
    • Creative Destruction Lab. Geoff Hinton: on radiology. 2016. Available at: https://www.youtube.com/watch?v=2HMPRXstSvQ. Accessed January 28, 2018.
    • (2018)
  • 52
    • 85046314598 scopus 로고    scopus 로고
    • Should radiologists be worried about their jobs? Breaking news: We can now diagnose pneumonia from chest X-rays better than radiologists. 2017. Available at: Accessed January 28
    • Ng A. Should radiologists be worried about their jobs? Breaking news: We can now diagnose pneumonia from chest X-rays better than radiologists. 2017. Available at: https://twitter.com/andrewyng/status/930938692310482944?lang=en. Accessed January 28, 2018.
    • (2018)
    • Ng, A.1
  • 53
    • 84980350859 scopus 로고    scopus 로고
    • Large scale deep learning for computer aided detection of mammographic lesions
    • Kooi, T., Litjens, G., van Ginneken, B., et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35 (2017), 303–312.
    • (2017) Med Image Anal , vol.35 , pp. 303-312
    • Kooi, T.1    Litjens, G.2    van Ginneken, B.3
  • 54
    • 85034647606 scopus 로고    scopus 로고
    • Learning normalized inputs for iterative estimation in medical image segmentation
    • Drozdzal, M., Chartrand, G., Vorontsov, E., et al. Learning normalized inputs for iterative estimation in medical image segmentation. Med Image Anal 44 (2018), 1–13.
    • (2018) Med Image Anal , vol.44 , pp. 1-13
    • Drozdzal, M.1    Chartrand, G.2    Vorontsov, E.3
  • 55
    • 84968662241 scopus 로고    scopus 로고
    • Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
    • Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S., Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35 (2016), 1207–1216.
    • (2016) IEEE Trans Med Imaging , vol.35 , pp. 1207-1216
    • Anthimopoulos, M.1    Christodoulidis, S.2    Ebner, L.3    Christe, A.4    Mougiakakou, S.5
  • 56
    • 84989187487 scopus 로고    scopus 로고
    • Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation
    • Shin, H.-C., Lu, L., Kim, L., Seff, A., Yao, J., Summers, R.M., Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation. J Mach Learn Res 17 (2016), 1–31.
    • (2016) J Mach Learn Res , vol.17 , pp. 1-31
    • Shin, H.-C.1    Lu, L.2    Kim, L.3    Seff, A.4    Yao, J.5    Summers, R.M.6
  • 57
    • 85020267502 scopus 로고    scopus 로고
    • A survey on deep learning in medical image analysis
    • [Epub ahead of print]
    • Litjens, G., Kooi, T., Bejnordi, B.E., et al. A survey on deep learning in medical image analysis. arXiv, 2017 [Epub ahead of print].
    • (2017) arXiv
    • Litjens, G.1    Kooi, T.2    Bejnordi, B.E.3
  • 58
    • 85014442834 scopus 로고    scopus 로고
    • Deep learning for identifying metastatic breast cancer
    • [Epub ahead of print]
    • Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H., Deep learning for identifying metastatic breast cancer. arXiv, 2016 [Epub ahead of print].
    • (2016) arXiv
    • Wang, D.1    Khosla, A.2    Gargeya, R.3    Irshad, H.4    Beck, A.H.5
  • 59
    • 85025112337 scopus 로고    scopus 로고
    • Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks
    • Lakhani, P., Sundaram, B., Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 284 (2017), 574–582.
    • (2017) Radiology , vol.284 , pp. 574-582
    • Lakhani, P.1    Sundaram, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.