-
1
-
-
84944735469
-
Deep Learning
-
1st ed. MIT Press Cambridge, MA
-
Goodfellow, I., Bengio, Y., Courville, A., Deep Learning. 1st ed., 2016, MIT Press, Cambridge, MA.
-
(2016)
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
2
-
-
85046312225
-
-
Merriam-Webster definition of artificial intelligence. Available at: Accessed January 28.
-
Merriam-Webster definition of artificial intelligence. Available at: https://www.merriam-webster.com/dictionary/artificial intelligence. Accessed January 28, 2018.
-
(2018)
-
-
-
3
-
-
85046314618
-
-
Guidance for Industry and Food and Drug Administration Staff - Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data - Premarket Notification [510(k)] Submissions. 2017. Available at: Accessed January 28.
-
Guidance for Industry and Food and Drug Administration Staff - Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device Data - Premarket Notification [510(k)] Submissions. 2017. Available at: https://www.fda.gov/MedicalDevices/ucm187249.htm. Accessed January 28, 2018.
-
(2018)
-
-
-
4
-
-
0001201756
-
Some Studies in Machine Learning Using the Game of Checkers
-
Arthur, S., Some Studies in Machine Learning Using the Game of Checkers. IBM J Res Dev 3 (1959), 535–554.
-
(1959)
IBM J Res Dev
, vol.3
, pp. 535-554
-
-
Arthur, S.1
-
5
-
-
85046316130
-
-
Google. Machine learning. Glossary. Available at: Accessed January 28
-
Google. Machine learning. Glossary. Available at: https://developers.google.com/machine-learning/glossary/#r. Accessed January 28, 2018.
-
(2018)
-
-
-
6
-
-
85046320240
-
-
A statistical learning/pattern recognition glossary. Available at: Accessed January 28
-
Minka T. A statistical learning/pattern recognition glossary. Available at: http://alumni.media.mit.edu/∼tpminka/statlearn/glossary/. Accessed January 28, 2018.
-
(2018)
-
-
Minka, T.1
-
7
-
-
33846092536
-
A proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955
-
McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E., A proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine, 27, 2006, 12.
-
(2006)
AI Magazine
, vol.27
, pp. 12
-
-
McCarthy, J.1
Minsky, M.L.2
Rochester, N.3
Shannon, C.E.4
-
8
-
-
85046311478
-
-
What is machine learning? Techemergence. 2017. Available at: Accessed January 22
-
Faggella D. What is machine learning? Techemergence. 2017. Available at: https://www.techemergence.com/what-is-machine-learning/. Accessed January 22, 2018.
-
(2018)
-
-
Faggella, D.1
-
9
-
-
85046318831
-
-
Easy Solutions, Inc. Building AI applications using deep learning. Available at: Accessed January 28
-
Bahnsen AC. Easy Solutions, Inc. Building AI applications using deep learning. Available at: http://blog.easysol.net/building-ai-applications. Accessed January 28, 2018.
-
(2018)
-
-
Bahnsen, A.C.1
-
10
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
11
-
-
85034600056
-
Deep learning: a primer for radiologists
-
Chartrand, G., Cheng, P.M., Vorontsov, E., et al. Deep learning: a primer for radiologists. Radiographics 37 (2017), 2113–2131.
-
(2017)
Radiographics
, vol.37
, pp. 2113-2131
-
-
Chartrand, G.1
Cheng, P.M.2
Vorontsov, E.3
-
12
-
-
85046312460
-
-
of Radiologists. Resources on AI, machine learning, and deep learning. Available at: Accessed January 28
-
Canadian Association of Radiologists. Resources on AI, machine learning, and deep learning. Available at: https://car.ca/innovation/artificial-intelligence/ai-resources/. Accessed January 28, 2018.
-
(2018)
-
-
Canadian Association1
-
13
-
-
85046316203
-
-
Use case development. Available at: Accessed January 28
-
American College of Radiology Data Science Institute. Use case development. Available at: http://acrdsi.org/use-case-development.html. Accessed January 28, 2018.
-
(2018)
-
-
American College of Radiology Data Science Institute1
-
14
-
-
84857037061
-
Radiomics: extracting more information from medical images using advanced feature analysis
-
Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48 (2012), 441–446.
-
(2012)
Eur J Cancer
, vol.48
, pp. 441-446
-
-
Lambin, P.1
Rios-Velazquez, E.2
Leijenaar, R.3
-
15
-
-
85046315047
-
-
LiTS: liver tumor segmentation challenge. 2017. Available at: Accessed January 28
-
Christ PF. LiTS: liver tumor segmentation challenge. 2017. Available at: https://competitions.codalab.org/competitions/17094. Accessed January 28, 2018.
-
(2018)
-
-
Christ, P.F.1
-
16
-
-
85046311803
-
-
Lung nodule risk stratification using CNNs: can we generalize from screening training data? Conference on Machine Intelligence in Medical Imaging. September 26–27; Baltimore, MD.
-
Pickup LC, Gleeson F, Talwar A, Kadir T. Lung nodule risk stratification using CNNs: can we generalize from screening training data? Conference on Machine Intelligence in Medical Imaging. September 26–27, 2017; Baltimore, MD.
-
(2017)
-
-
Pickup, L.C.1
Gleeson, F.2
Talwar, A.3
Kadir, T.4
-
17
-
-
85046316776
-
One pixel attack for fooling deep neural networks
-
[Epub ahead of print]
-
Su, J., Vargas, D.V., Kouichi, S., One pixel attack for fooling deep neural networks. arXiv, 2017 [Epub ahead of print].
-
(2017)
arXiv
-
-
Su, J.1
Vargas, D.V.2
Kouichi, S.3
-
18
-
-
85055096358
-
Robust physical-world attacks on deep learning models
-
[Epub ahead of print]
-
Evtimov, I., Eykholt, K., Fernandes, E., et al. Robust physical-world attacks on deep learning models. arXiv, 2017 [Epub ahead of print].
-
(2017)
arXiv
-
-
Evtimov, I.1
Eykholt, K.2
Fernandes, E.3
-
19
-
-
84961111700
-
Revised recommendations of the Consortium of MS Centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis
-
Traboulsee, A., Simon, J.H., Stone, L., et al. Revised recommendations of the Consortium of MS Centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. AJNR Am J Neuroradiol 37 (2016), 394–401.
-
(2016)
AJNR Am J Neuroradiol
, vol.37
, pp. 394-401
-
-
Traboulsee, A.1
Simon, J.H.2
Stone, L.3
-
20
-
-
84948809033
-
STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies
-
Bossuyt, P.M., Reitsma, J.B., Bruns, D.E., et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Radiology 277 (2015), 826–832.
-
(2015)
Radiology
, vol.277
, pp. 826-832
-
-
Bossuyt, P.M.1
Reitsma, J.B.2
Bruns, D.E.3
-
21
-
-
84923923813
-
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement
-
Collins, G.S., Reitsma, J.B., Altman, D.G., Moons, K.G., Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med 162 (2015), 55–63.
-
(2015)
Ann Intern Med
, vol.162
, pp. 55-63
-
-
Collins, G.S.1
Reitsma, J.B.2
Altman, D.G.3
Moons, K.G.4
-
22
-
-
85043275243
-
Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks
-
Springer International Cham, Switzerland
-
Kamnitsas, K., Baumgartner, C., Ledig, C., et al. Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks. 2017, Springer International, Cham, Switzerland.
-
(2017)
-
-
Kamnitsas, K.1
Baumgartner, C.2
Ledig, C.3
-
23
-
-
85046321545
-
-
Canada needs to nurture local tech champions and protect research, says AI pioneer. National Post. 2017. Available at: Accessed January 28.
-
Canada needs to nurture local tech champions and protect research, says AI pioneer. National Post. 2017. Available at: http://nationalpost.com/pmn/news-pmn/canada-news-pmn/canada-needs-to-nurture-local-tech-champions-and-protect-research-says-ai-pioneer. Accessed January 28, 2018.
-
(2018)
-
-
-
24
-
-
85046311901
-
-
: Canada's early start in artificial intelligence set it up to be today's global powerhouse. Financial Post. 2017. Available at: Accessed January 28.
-
Deveau D. Revolution AI: Canada's early start in artificial intelligence set it up to be today's global powerhouse. Financial Post. 2017. Available at: http://business.financialpost.com/entrepreneur/0123-biz-dd-intelligence. Accessed January 28, 2018.
-
(2018)
-
-
Deveau, D.1
Revolution, A.I.2
-
25
-
-
85046320464
-
-
Canada's health infostructure. 2004. Available at: Accessed January 28.
-
Government of Canada. Canada's health infostructure. 2004. Available at: https://www.canada.ca/en/health-canada/services/health-care-system/ehealth/canada-health-infostructure.html. Accessed January 28, 2018.
-
(2018)
-
-
Government of Canada1
-
26
-
-
85046318515
-
-
Canada Health Infoway. Standards centre. Available at: Accessed February 6
-
Canada Health Infoway. Standards centre. Available at: https://infocentral.infoway-inforoute.ca/en/standards/standards-selection-framework/standards-ssf. Accessed February 6, 2018.
-
(2018)
-
-
-
27
-
-
85017419586
-
Deep learning of brain images and its application to multiple sclerosis
-
G. Wu D. Shen M. Sabuncu Elsevier New York
-
Brosch, T., Yoo, Y., Tang, L., Tam, R., Deep learning of brain images and its application to multiple sclerosis. Wu, G., Shen, D., Sabuncu, M., (eds.) Machine Learning and Medical Imaging, 2016, Elsevier, New York, 69–96.
-
(2016)
Machine Learning and Medical Imaging
, pp. 69-96
-
-
Brosch, T.1
Yoo, Y.2
Tang, L.3
Tam, R.4
-
28
-
-
85046316598
-
-
Radiology Informatics Lab at Stanford Medicine. Medical ImageNet. 2016. Available at: Accessed January 28.
-
Radiology Informatics Lab at Stanford Medicine. Medical ImageNet. 2016. Available at: http://langlotzlab.stanford.edu/projects/medical-image-net/. Accessed January 28, 2018.
-
(2018)
-
-
-
29
-
-
85046318420
-
-
Digital Imaging and Communications in Medicine. Available at: Accessed January 28, 2018.
-
DICOM. Digital Imaging and Communications in Medicine. Available at: https://www.dicomstandard.org/. Accessed January 28, 2018.
-
-
-
DICOM1
-
30
-
-
85046320731
-
-
3.6 2018a - data dictionary. 2018. Available at: Accessed January 28.
-
DICOM PS3.6 2018a - data dictionary. 2018. Available at: http://dicom.nema.org/medical/dicom/current/output/html/part06.html. Accessed January 28, 2018.
-
(2018)
-
-
DICOM, P.S.1
-
31
-
-
85046315007
-
-
Practical implications of sharing data: a primer on data privacy, anonymization, and de-identification. Paper 1884–2015. SAS Global Forum Proceedings 2015. Available at: Accessed January 28.
-
Nelson GS. Practical implications of sharing data: a primer on data privacy, anonymization, and de-identification. Paper 1884–2015. SAS Global Forum Proceedings 2015. Available at: https://support.sas.com/resources/papers/proceedings15/1884-2015.pdf. Accessed January 28, 2018.
-
(2018)
-
-
Nelson, G.S.1
-
32
-
-
85046318746
-
-
Council of Canadian Academies. Accessing Health and Health-Related Data in Canada: The Expert Panel on Timely Access to Health and Social Data for Health Research and Health System Innovation. 2015. Available at: Accessed January 28.
-
Council of Canadian Academies. Accessing Health and Health-Related Data in Canada: The Expert Panel on Timely Access to Health and Social Data for Health Research and Health System Innovation. 2015. Available at: http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/Health-data/HealthDataFullReportEn.pdf. Accessed January 28, 2018.
-
(2018)
-
-
-
33
-
-
73949108124
-
The annotation and image mark-up project
-
Channin, D.S., Mongkolwat, P., Kleper, V., Rubin, D.L., The annotation and image mark-up project. Radiology 253 (2009), 590–592.
-
(2009)
Radiology
, vol.253
, pp. 590-592
-
-
Channin, D.S.1
Mongkolwat, P.2
Kleper, V.3
Rubin, D.L.4
-
34
-
-
85046318971
-
Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
-
Springer New York
-
Cardoso, M.J., Arbel, T., Lee, S.L., et al. Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. 2017, Springer, New York.
-
(2017)
-
-
Cardoso, M.J.1
Arbel, T.2
Lee, S.L.3
-
35
-
-
85046321718
-
-
Comparison of deep learning software. Available at: Accessed January 28
-
Comparison of deep learning software. Available at: https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software. Accessed January 28, 2018.
-
(2018)
-
-
-
36
-
-
85046321725
-
-
Top 10 deep learning frameworks. Packt Hub. 2017. Available at: Accessed January 28
-
Varangaonkar A. Top 10 deep learning frameworks. Packt Hub. 2017. Available at: https://datahub.packtpub.com/deep-learning/top-10-deep-learning-frameworks/. Accessed January 28, 2018.
-
(2018)
-
-
Varangaonkar, A.1
-
37
-
-
84926444656
-
Docker: lightweight linux containers for consistent development and deployment
-
Merkel, D., Docker: lightweight linux containers for consistent development and deployment. Linux J, 2014, 2014, 2.
-
(2014)
Linux J
, vol.2014
, pp. 2
-
-
Merkel, D.1
-
38
-
-
85046320604
-
-
Compute Canada. Available at: Accessed February 6.
-
Compute Canada. Available at: https://www.computecanada.ca/research-showcase/. Accessed February 6, 2018.
-
(2018)
-
-
-
39
-
-
33646483378
-
Comparative accuracy: assessing new tests against existing diagnostic pathways
-
Bossuyt, P.M., Irwig, L., Craig, J., Glasziou, P., Comparative accuracy: assessing new tests against existing diagnostic pathways. BMJ 332 (2006), 1089–1092.
-
(2006)
BMJ
, vol.332
, pp. 1089-1092
-
-
Bossuyt, P.M.1
Irwig, L.2
Craig, J.3
Glasziou, P.4
-
40
-
-
85013092765
-
Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer
-
Becker, A.S., Marcon, M., Ghafoor, S., Wurnig, M.C., Frauenfelder, T., Boss, A., Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol 52 (2017), 434–440.
-
(2017)
Invest Radiol
, vol.52
, pp. 434-440
-
-
Becker, A.S.1
Marcon, M.2
Ghafoor, S.3
Wurnig, M.C.4
Frauenfelder, T.5
Boss, A.6
-
41
-
-
84955604605
-
Radiomics: images are more than pictures, they are data
-
Gillies, R.J., Kinahan, P.E., Hricak, H., Radiomics: images are more than pictures, they are data. Radiology 278 (2016), 563–577.
-
(2016)
Radiology
, vol.278
, pp. 563-577
-
-
Gillies, R.J.1
Kinahan, P.E.2
Hricak, H.3
-
42
-
-
85046312656
-
-
Reporting and data systems. Available at: Accessed January 28
-
American College of Radiology. Reporting and data systems. Available at: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems. Accessed January 28, 2018.
-
(2018)
-
-
American College of Radiology1
-
43
-
-
84965134347
-
Natural language processing in radiology: a systematic review
-
Pons, E., Braun, L.M., Hunink, M.G., Kors, J.A., Natural language processing in radiology: a systematic review. Radiology 279 (2016), 329–343.
-
(2016)
Radiology
, vol.279
, pp. 329-343
-
-
Pons, E.1
Braun, L.M.2
Hunink, M.G.3
Kors, J.A.4
-
44
-
-
85021126291
-
Creation of an open framework for point-of-care computer-assisted reporting and decision support tools for radiologists
-
Alkasab, T.K., Bizzo, B.C., Berland, L.L., Nair, S., Pandharipande, P.V., Harvey, H.B., Creation of an open framework for point-of-care computer-assisted reporting and decision support tools for radiologists. J Am Coll Radiol 14 (2017), 1184–1189.
-
(2017)
J Am Coll Radiol
, vol.14
, pp. 1184-1189
-
-
Alkasab, T.K.1
Bizzo, B.C.2
Berland, L.L.3
Nair, S.4
Pandharipande, P.V.5
Harvey, H.B.6
-
45
-
-
85043729011
-
ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
-
[Epub ahead of print]
-
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M., ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. arXiv, 2017 [Epub ahead of print].
-
(2017)
arXiv
-
-
Wang, X.1
Peng, Y.2
Lu, L.3
Lu, Z.4
Bagheri, M.5
Summers, R.M.6
-
46
-
-
84928096517
-
Advanced search of the electronic medical record: augmenting safety and efficiency in radiology
-
Zalis, M., Harris, M., Advanced search of the electronic medical record: augmenting safety and efficiency in radiology. J Am Coll Radiol 7 (2010), 625–633.
-
(2010)
J Am Coll Radiol
, vol.7
, pp. 625-633
-
-
Zalis, M.1
Harris, M.2
-
47
-
-
84886473072
-
TCIA: an information resource to enable open science
-
Prior, F.W., Clark, K., Commean, P., et al. TCIA: an information resource to enable open science. Conf Proc IEEE Eng Med Biol Soc 2013 (2013), 1282–1285.
-
(2013)
Conf Proc IEEE Eng Med Biol Soc
, vol.2013
, pp. 1282-1285
-
-
Prior, F.W.1
Clark, K.2
Commean, P.3
-
48
-
-
84882310107
-
The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud
-
Wolstencroft, K., Haines, R., Fellows, D., et al. The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res 41 (2013), W557–W561.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. W557-W561
-
-
Wolstencroft, K.1
Haines, R.2
Fellows, D.3
-
49
-
-
84921861095
-
The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery
-
Dumontier, M., Baker, C.J., Baran, J., et al. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery. J Biomed Semantics, 5, 2014, 14.
-
(2014)
J Biomed Semantics
, vol.5
, pp. 14
-
-
Dumontier, M.1
Baker, C.J.2
Baran, J.3
-
50
-
-
34250311582
-
RadLex: a new method for indexing online educational materials
-
Langlotz, C.P., RadLex: a new method for indexing online educational materials. Radiographics 26 (2006), 1595–1597.
-
(2006)
Radiographics
, vol.26
, pp. 1595-1597
-
-
Langlotz, C.P.1
-
51
-
-
85046320784
-
-
Creative Destruction Lab. Geoff Hinton: on radiology. 2016. Available at: Accessed January 28
-
Creative Destruction Lab. Geoff Hinton: on radiology. 2016. Available at: https://www.youtube.com/watch?v=2HMPRXstSvQ. Accessed January 28, 2018.
-
(2018)
-
-
-
52
-
-
85046314598
-
-
Should radiologists be worried about their jobs? Breaking news: We can now diagnose pneumonia from chest X-rays better than radiologists. 2017. Available at: Accessed January 28
-
Ng A. Should radiologists be worried about their jobs? Breaking news: We can now diagnose pneumonia from chest X-rays better than radiologists. 2017. Available at: https://twitter.com/andrewyng/status/930938692310482944?lang=en. Accessed January 28, 2018.
-
(2018)
-
-
Ng, A.1
-
53
-
-
84980350859
-
Large scale deep learning for computer aided detection of mammographic lesions
-
Kooi, T., Litjens, G., van Ginneken, B., et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35 (2017), 303–312.
-
(2017)
Med Image Anal
, vol.35
, pp. 303-312
-
-
Kooi, T.1
Litjens, G.2
van Ginneken, B.3
-
54
-
-
85034647606
-
Learning normalized inputs for iterative estimation in medical image segmentation
-
Drozdzal, M., Chartrand, G., Vorontsov, E., et al. Learning normalized inputs for iterative estimation in medical image segmentation. Med Image Anal 44 (2018), 1–13.
-
(2018)
Med Image Anal
, vol.44
, pp. 1-13
-
-
Drozdzal, M.1
Chartrand, G.2
Vorontsov, E.3
-
55
-
-
84968662241
-
Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
-
Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S., Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35 (2016), 1207–1216.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, pp. 1207-1216
-
-
Anthimopoulos, M.1
Christodoulidis, S.2
Ebner, L.3
Christe, A.4
Mougiakakou, S.5
-
56
-
-
84989187487
-
Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation
-
Shin, H.-C., Lu, L., Kim, L., Seff, A., Yao, J., Summers, R.M., Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation. J Mach Learn Res 17 (2016), 1–31.
-
(2016)
J Mach Learn Res
, vol.17
, pp. 1-31
-
-
Shin, H.-C.1
Lu, L.2
Kim, L.3
Seff, A.4
Yao, J.5
Summers, R.M.6
-
57
-
-
85020267502
-
A survey on deep learning in medical image analysis
-
[Epub ahead of print]
-
Litjens, G., Kooi, T., Bejnordi, B.E., et al. A survey on deep learning in medical image analysis. arXiv, 2017 [Epub ahead of print].
-
(2017)
arXiv
-
-
Litjens, G.1
Kooi, T.2
Bejnordi, B.E.3
-
58
-
-
85014442834
-
Deep learning for identifying metastatic breast cancer
-
[Epub ahead of print]
-
Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H., Deep learning for identifying metastatic breast cancer. arXiv, 2016 [Epub ahead of print].
-
(2016)
arXiv
-
-
Wang, D.1
Khosla, A.2
Gargeya, R.3
Irshad, H.4
Beck, A.H.5
-
59
-
-
85025112337
-
Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks
-
Lakhani, P., Sundaram, B., Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 284 (2017), 574–582.
-
(2017)
Radiology
, vol.284
, pp. 574-582
-
-
Lakhani, P.1
Sundaram, B.2
|