-
3
-
-
84936413822
-
-
New York: Pantheon: An American Legend
-
Keats EJ. John Henry. New York: Pantheon: An American Legend; 1965.
-
(1965)
John Henry
-
-
Keats, E.J.1
-
4
-
-
85021635595
-
Machine learning and prediction in medicine-beyond the peak of inflated expectations
-
Chen JH, Asch SM. Machine learning and prediction in medicine-beyond the peak of inflated expectations. N Engl J Med. 2017;376:2507-2509.
-
(2017)
N Engl J Med.
, vol.376
, pp. 2507-2509
-
-
Chen, J.H.1
Asch, S.M.2
-
5
-
-
30144440544
-
A (very) brief history of artificial intelligence
-
Buchanan BG. A (very) brief history of artificial intelligence. AI Mag. 2005;26:53.
-
(2005)
AI Mag.
, vol.26
, pp. 53
-
-
Buchanan, B.G.1
-
7
-
-
84947466043
-
Machine learning in medicine
-
Deo RC. Machine learning in medicine. Circulation. 2015;132:1920-1930.
-
(2015)
Circulation.
, vol.132
, pp. 1920-1930
-
-
Deo, R.C.1
-
10
-
-
84901870499
-
The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas
-
Bothe MK, Dickens L, Reichel K, et al. The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas. Expert Rev Med Devices. 2013;10:661-673.
-
(2013)
Expert Rev Med Devices.
, vol.10
, pp. 661-673
-
-
Bothe, M.K.1
Dickens, L.2
Reichel, K.3
-
11
-
-
0020001973
-
An experimental computer-based diagnostic consultant for general internal medicine
-
Miller RA, Pople HEJ, Myers JD, et al. An experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med. 1982;307:468-476.
-
(1982)
N Engl J Med.
, vol.307
, pp. 468-476
-
-
Miller, R.A.1
Hej, P.2
Myers, J.D.3
-
12
-
-
33744961676
-
Applications of machine learning in cancer prediction and prognosis
-
Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2006;2:59.
-
(2006)
Cancer Inform.
, vol.2
, pp. 59
-
-
Cruz, J.A.1
Wishart, D.S.2
-
13
-
-
84994850514
-
Data-driven temporal prediction of surgical site infection
-
Soguero-Ruiz C, Fei WM, Jenssen R, et al. Data-driven temporal prediction of surgical site infection. AMIA Annu Symp Proc. 2015;2015:1164-1173.
-
(2015)
AMIA Annu Symp Proc.
, vol.2015
, pp. 1164-1173
-
-
Soguero-Ruiz, C.1
Fei, W.M.2
Jenssen, R.3
-
14
-
-
0034086083
-
Strategies for improving comorbidity measures based on Medicare and Medicaid claims data
-
Wang PS, Walker A, Tsuang M, et al. Strategies for improving comorbidity measures based on Medicare and Medicaid claims data. J Clin Epidemiol. 2000;53:571-578.
-
(2000)
J Clin Epidemiol.
, vol.53
, pp. 571-578
-
-
Wang, P.S.1
Walker, A.2
Tsuang, M.3
-
15
-
-
85050202814
-
Classifying lung cancer severity with ensemble machine learning in health care claims data
-
Bergquist S, Brooks G, Keating N, et al. Classifying lung cancer severity with ensemble machine learning in health care claims data. Proc Mach Learn Res. 2017;68:25-38.
-
(2017)
Proc Mach Learn Res.
, vol.68
, pp. 25-38
-
-
Bergquist, S.1
Brooks, G.2
Keating, N.3
-
17
-
-
80052063328
-
Automated identification of postoperative complications within an electronic medical record using natural language processing
-
Murff HJ, FitzHenry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA. 2011;306:848-855.
-
(2011)
JAMA.
, vol.306
, pp. 848-855
-
-
Murff, H.J.1
Fitzhenry, F.2
Matheny, M.E.3
-
18
-
-
21544453050
-
Automated detection of adverse events using natural language processing of discharge summaries
-
Melton GB, Hripcsak G. Automated detection of adverse events using natural language processing of discharge summaries. J Am Med Inform Assoc. 2005;12:448-457.
-
(2005)
J Am Med Inform Assoc.
, vol.12
, pp. 448-457
-
-
Melton, G.B.1
Hripcsak, G.2
-
19
-
-
4544280638
-
Automated encoding of clinical documents based on natural language processing
-
Friedman C, Shagina L, Lussier Y, et al. Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc. 2004;11:392-402.
-
(2004)
J Am Med Inform Assoc.
, vol.11
, pp. 392-402
-
-
Friedman, C.1
Shagina, L.2
Lussier, Y.3
-
20
-
-
84986608457
-
Support vector feature selection for early detection of anastomosis leakage from bag-of-words in electronic health records
-
Soguero-Ruiz C, Hindberg K, Rojo-Alvarez JL, et al. Support vector feature selection for early detection of anastomosis leakage from bag-of-words in electronic health records. IEEE J Biomed Health Inform. 2016;20:1404-1415.
-
(2016)
IEEE J Biomed Health Inform.
, vol.20
, pp. 1404-1415
-
-
Soguero-Ruiz, C.1
Hindberg, K.2
Rojo-Alvarez, J.L.3
-
21
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527-1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
22
-
-
33845502065
-
Identification of severe acute pancreatitis using an artificial neural network
-
Modifi R, Duff MD, Madhavan KK, et al. Identification of severe acute pancreatitis using an artificial neural network. Surgery. 2007;141:59-66.
-
(2007)
Surgery.
, vol.141
, pp. 59-66
-
-
Modifi, R.1
Duff, M.D.2
Madhavan, K.K.3
-
23
-
-
84978428149
-
Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm
-
Monsalve-Torra A, Ruiz-Fernandez D, Marin-Alonso O, et al. Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm. J Biomed Inform. 2016;62: 195-201.
-
(2016)
J Biomed Inform.
, vol.62
, pp. 195-201
-
-
Monsalve-Torra, A.1
Ruiz-Fernandez, D.2
Marin-Alonso, O.3
-
25
-
-
84940007967
-
Computer-assisted abdominal surgery: New technologies
-
Kenngott HG, Wagner M, Nickel F, et al. Computer-assisted abdominal surgery: new technologies. Langenbecks Arch Surg. 2015;400:273-281.
-
(2015)
Langenbecks Arch Surg.
, vol.400
, pp. 273-281
-
-
Kenngott, H.G.1
Wagner, M.2
Nickel, F.3
-
29
-
-
84938528763
-
Characterising "near miss" events in complex laparoscopic surgery through video analysis
-
Bonrath EM, Gordon LE, Grantcharov TP. Characterising "near miss" events in complex laparoscopic surgery through video analysis. BMJ Qual Saf. 2015;24:516-521.
-
(2015)
BMJ Qual Saf.
, vol.24
, pp. 516-521
-
-
Bonrath, E.M.1
Gordon, L.E.2
Grantcharov, T.P.3
-
30
-
-
84954349090
-
Using surgical video to improve technique and skill
-
Grenda TR, Pradarelli JC, Dimick JB. Using surgical video to improve technique and skill. Ann Surg. 2016;264:32-33.
-
(2016)
Ann Surg.
, vol.264
, pp. 32-33
-
-
Grenda, T.R.1
Pradarelli, J.C.2
Dimick, J.B.3
-
33
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115-118.
-
(2017)
Nature.
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
34
-
-
84962333241
-
Predicting colorectal surgical complications using heterogeneous clinical data and kernel methods
-
Soguero-Ruiz C, Hindberg K, Mora-Jimenez I, et al. Predicting colorectal surgical complications using heterogeneous clinical data and kernel methods. J Biomed Inform. 2016;61:87-96.
-
(2016)
J Biomed Inform.
, vol.61
, pp. 87-96
-
-
Soguero-Ruiz, C.1
Hindberg, K.2
Mora-Jimenez, I.3
-
35
-
-
84996486504
-
Recognizing surgical activities with recurrent neural networks
-
Ourselin S Joskowicz L Sabuncu M et al. eds Cham: Springer International Publishing
-
DiPietro R, Lea C, Malpani A, et al. Recognizing surgical activities with recurrent neural networks. In: Ourselin S, Joskowicz L, Sabuncu M, et al., eds. Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing; 2016. 551-558.
-
(2016)
Medical Image Computing and Computer-Assisted Intervention
, pp. 551-558
-
-
Dipietro, R.1
Lea, C.2
Malpani, A.3
-
36
-
-
84879888011
-
Surgical gesture classification from video and kinematic data
-
Zappella L, Béjar B, Hager G, et al. Surgical gesture classification from video and kinematic data. Med Image Anal. 2013;17:732-745.
-
(2013)
Med Image Anal.
, vol.17
, pp. 732-745
-
-
Zappella, L.1
Béjar, B.2
Hager, G.3
-
37
-
-
81955160799
-
Evolution of autonomous and semi-autonomous robotic surgical systems: A review of the literature
-
Moustris GP, Hiridis SC, Deliparaschos KM, et al. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot. 2011;7:375-392.
-
(2011)
Int J Med Robot.
, vol.7
, pp. 375-392
-
-
Moustris, G.P.1
Hiridis, S.C.2
Deliparaschos, K.M.3
-
38
-
-
84969980426
-
Supervised autonomous robotic soft tissue surgery
-
Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016;8:337ra64-1337ra.
-
(2016)
Sci Transl Med.
, vol.8
, pp. 337ra64-1337ra
-
-
Shademan, A.1
Decker, R.S.2
Opfermann, J.D.3
-
40
-
-
78349274046
-
Logistic regression had superior performance compared with regression trees for predicting in-hospital mortality in patients hospitalized with heart failure
-
Austin PC, Tu JV, Lee DS. Logistic regression had superior performance compared with regression trees for predicting in-hospital mortality in patients hospitalized with heart failure. J Clin Epidemiol. 2010;63: 1145-1155.
-
(2010)
J Clin Epidemiol.
, vol.63
, pp. 1145-1155
-
-
Austin, P.C.1
Tu, J.V.2
Lee, D.S.3
-
42
-
-
84934319904
-
Discovery with Data: Leveraging Statistics with Computer Science to Transform Science and Society
-
Rudin C, Dunson D, Irizarry R, et al. Discovery with Data: Leveraging Statistics with Computer Science to Transform Science and Society. In: American Statistical Association White Paper; 2014.
-
(2014)
American Statistical Association White Paper
-
-
Rudin, C.1
Dunson, D.2
Irizarry, R.3
-
44
-
-
0035822324
-
Systematic reviews in health care: Assessing the quality of controlled clinical trials
-
Jüni P, Altman DG, Egger M. Systematic reviews in health care: assessing the quality of controlled clinical trials. BMJ. 2001;323:42-46.
-
(2001)
BMJ.
, vol.323
, pp. 42-46
-
-
Jüni, P.1
Altman, D.G.2
Egger, M.3
-
45
-
-
69349099139
-
Publication bias in clinical trials due to statistical significance or direction of trial results
-
Hopewell S, Loudon K, Clarke MJ, et al. Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst Rev. 2009;1:MR000006.
-
(2009)
Cochrane Database Syst Rev.
, vol.1
, pp. MR000006
-
-
Hopewell, S.1
Loudon, K.2
Clarke, M.J.3
-
46
-
-
2642573558
-
Participation in cancer clinical trials: Race-, sex-, and age-based disparities
-
Murthy VH, Krumholz HM, Gross CP. Participation in cancer clinical trials: race-, sex-, and age-based disparities. JAMA. 2004;291:2720-2726.
-
(2004)
JAMA.
, vol.291
, pp. 2720-2726
-
-
Murthy, V.H.1
Krumholz, H.M.2
Gross, C.P.3
-
47
-
-
34250348000
-
Gender bias in cardiovascular testing persists after adjustment for presenting characteristics and cardiac risk
-
Chang AM, Mumma B, Sease KL, et al. Gender bias in cardiovascular testing persists after adjustment for presenting characteristics and cardiac risk. Acad Emerg Med. 2007;14:599-605.
-
(2007)
Acad Emerg Med.
, vol.14
, pp. 599-605
-
-
Chang, A.M.1
Mumma, B.2
Sease, K.L.3
-
48
-
-
0030590027
-
The evaluation of chest pain in women
-
Douglas PS, Ginsburg GS. The evaluation of chest pain in women. N Engl J Med. 1996;334:1311-1315.
-
(1996)
N Engl J Med.
, vol.334
, pp. 1311-1315
-
-
Douglas, P.S.1
Ginsburg, G.S.2
-
49
-
-
85042155331
-
ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
-
Wang X, Peng Y, Lu L, et al. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. In: IEEE CVPR, Honolulu, HI: 2017.
-
(2017)
IEEE CVPR, Honolulu, HI
-
-
Wang, X.1
Peng, Y.2
Lu, L.3
-
52
-
-
84877827546
-
Opening the black box: Low-dimensional dynamics in high-dimensional recurrent neural networks
-
Sussillo D, Barak O. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 2013;25: 626-649.
-
(2013)
Neural Comput.
, vol.25
, pp. 626-649
-
-
Sussillo, D.1
Barak, O.2
-
53
-
-
85027869169
-
Unintended consequences of machine learning in medicine
-
Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017;318:517-518.
-
(2017)
JAMA.
, vol.318
, pp. 517-518
-
-
Cabitza, F.1
Rasoini, R.2
Gensini, G.F.3
-
54
-
-
84993965279
-
Interpretable deep neural networks for single-trial EEG classification
-
Sturm I, Lapuschkin S, Samek W, et al. Interpretable deep neural networks for single-trial EEG classification. J Neurosci Methods. 2016;274:141-145.
-
(2016)
J Neurosci Methods.
, vol.274
, pp. 141-145
-
-
Sturm, I.1
Lapuschkin, S.2
Samek, W.3
-
58
-
-
85050252144
-
High-risk breast lesions: A machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision
-
Epub ahead of print
-
Bahl M, Barzilay R, Yedidia AB, et al. High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology; 0:170549. Epub ahead of print.
-
Radiology
, pp. 170549
-
-
Bahl, M.1
Barzilay, R.2
Yedidia, A.B.3
-
59
-
-
85012969564
-
Usability evaluation of a blood glucose monitoring system with a spill-resistant vial, easier strip handling, and connectivity to a mobile app: Improvement of patient convenience and satisfaction
-
Harvey C, Koubek R, Begat V, et al. usability evaluation of a blood glucose monitoring system with a spill-resistant vial, easier strip handling, and connectivity to a mobile app: improvement of patient convenience and satisfaction. J Diabetes Sci Technol. 2016;10:1136-1141.
-
(2016)
J Diabetes Sci Technol.
, vol.10
, pp. 1136-1141
-
-
Harvey, C.1
Koubek, R.2
Begat, V.3
-
60
-
-
85047124079
-
Designing patient-centered text messaging interventions for increasing physical activity among participants with type 2 diabetes: Qualitative results from the text to move intervention
-
Horner GN, Agboola S, Jethwani K, et al. Designing patient-centered text messaging interventions for increasing physical activity among participants with type 2 diabetes: qualitative results from the text to move intervention. JMIR Mhealth Uhealth. 2017;5:e54.
-
(2017)
JMIR Mhealth Uhealth.
, vol.5
, pp. e54
-
-
Horner, G.N.1
Agboola, S.2
Jethwani, K.3
-
61
-
-
85038916150
-
Impact of an electronic health record-integrated personal health record on patient participation in health care: Development and randomized controlled trial of MyHealthKeeper
-
Ryu B, Kim N, Heo E, et al. Impact of an electronic health record-integrated personal health record on patient participation in health care: development and randomized controlled trial of MyHealthKeeper. J Med Internet Res. 2017;19:e401.
-
(2017)
J Med Internet Res.
, vol.19
, pp. e401
-
-
Ryu, B.1
Kim, N.2
Heo, E.3
-
62
-
-
85023203874
-
Nutritional monitoring of patients post-bariatric surgery: Implications for smartphone applications
-
Elvin-Walsh L, Ferguson M, Collins PF. Nutritional monitoring of patients post-bariatric surgery: implications for smartphone applications. J Hum Nutr Diet. 2018;31:141-148.
-
(2018)
J Hum Nutr Diet.
, vol.31
, pp. 141-148
-
-
Elvin-Walsh, L.1
Ferguson, M.2
Collins, P.F.3
-
63
-
-
85016059428
-
Are we ready for our close-up? Why and how we must embrace video in the or
-
Langerman A, Grantcharov TP. Are we ready for our close-up? Why and how we must embrace video in the OR. Ann Surg. 2017;266:934-936.
-
(2017)
Ann Surg.
, vol.266
, pp. 934-936
-
-
Langerman, A.1
Grantcharov, T.P.2
-
64
-
-
85050192950
-
Surgical video in the age of big data
-
[Epub ahead of print]
-
Hashimoto DA, Rosman G, Rus D, et al. Surgical video in the age of big data. Ann Surg. 2017 [Epub ahead of print].
-
(2017)
Ann Surg.
-
-
Hashimoto, D.A.1
Rosman, G.2
Rus, D.3
-
66
-
-
84902799705
-
Finding the missing link for big biomedi-cal data
-
Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedi-cal data. JAMA. 2014;311:2479-2480.
-
(2014)
JAMA.
, vol.311
, pp. 2479-2480
-
-
Weber, G.M.1
Mandl, K.D.2
Kohane, I.S.3
-
67
-
-
84885580128
-
Surgical skill and complication rates after bariatric surgery
-
Birkmeyer JD, Finks JF, O'Reilly A, et al. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369:1434-1442.
-
(2013)
N Engl J Med.
, vol.369
, pp. 1434-1442
-
-
Birkmeyer, J.D.1
Finks, J.F.2
O'Reilly, A.3
-
68
-
-
84975073320
-
Video ratings of surgical skill and late outcomes of bariatric surgery
-
Scally CP, Varban OA, Carlin AM, et al. Video ratings of surgical skill and late outcomes of bariatric surgery. JAMA Surg. 2016;151:e160428.
-
(2016)
JAMA Surg.
, vol.151
, pp. e160428
-
-
Scally, C.P.1
Varban, O.A.2
Carlin, A.M.3
-
69
-
-
84859916596
-
Future medicine shaped by aninterdisciplinary new biology
-
O'Shea P. Future medicine shaped by aninterdisciplinary new biology. Lancet. 2012;379:1544-1550.
-
(2012)
Lancet.
, vol.379
, pp. 1544-1550
-
-
O'Shea, P.1
-
70
-
-
0026566658
-
Four models of the physician-patient relationship
-
Emanuel EJ, Emanuel LL. Four models of the physician-patient relationship. JAMA. 1992;267:2221-2226.
-
(1992)
JAMA.
, vol.267
, pp. 2221-2226
-
-
Emanuel, E.J.1
Emanuel, L.L.2
-
71
-
-
84990046464
-
Predicting the future-big data, machine learning, and clinical medicine
-
Obermeyer Z, Emanuel EJ. Predicting the future-big data, machine learning, and clinical medicine. N Engl J Med. 2016;375:1216-1219.
-
(2016)
N Engl J Med.
, vol.375
, pp. 1216-1219
-
-
Obermeyer, Z.1
Emanuel, E.J.2
-
72
-
-
1842679306
-
Physicians' use of electronic medical records: Barriers and solutions
-
Miller RH, Sim I. Physicians' use of electronic medical records: barriers and solutions. Health Aff. 2004;23:116-126.
-
(2004)
Health Aff.
, vol.23
, pp. 116-126
-
-
Miller, R.H.1
Sim, I.2
|