메뉴 건너뛰기




Volumn 268, Issue 1, 2018, Pages 70-76

Artificial Intelligence in Surgery: Promises and Perils

Author keywords

artificial intelligence; clinical decision support; computer vision; computer assisted surgery; deep learning; machine learning; natural language processing; neural networks; surgery

Indexed keywords

ADULT; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; CLINICAL DECISION SUPPORT SYSTEM; COMPUTER ASSISTED SURGERY; FEMALE; HUMAN; MACHINE LEARNING; MALE; NATURAL LANGUAGE PROCESSING; NERVOUS SYSTEM; PATIENT CARE; REVIEW; SCIENTIST; SOCIAL NETWORK; STATISTICS; SURGEON; SURGERY; SYSTEMATIC REVIEW; VISION; PHYSICIAN ATTITUDE; PROCEDURES;

EID: 85049736728     PISSN: 00034932     EISSN: 15281140     Source Type: Journal    
DOI: 10.1097/SLA.0000000000002693     Document Type: Review
Times cited : (704)

References (72)
  • 3
    • 84936413822 scopus 로고
    • New York: Pantheon: An American Legend
    • Keats EJ. John Henry. New York: Pantheon: An American Legend; 1965.
    • (1965) John Henry
    • Keats, E.J.1
  • 4
    • 85021635595 scopus 로고    scopus 로고
    • Machine learning and prediction in medicine-beyond the peak of inflated expectations
    • Chen JH, Asch SM. Machine learning and prediction in medicine-beyond the peak of inflated expectations. N Engl J Med. 2017;376:2507-2509.
    • (2017) N Engl J Med. , vol.376 , pp. 2507-2509
    • Chen, J.H.1    Asch, S.M.2
  • 5
    • 30144440544 scopus 로고    scopus 로고
    • A (very) brief history of artificial intelligence
    • Buchanan BG. A (very) brief history of artificial intelligence. AI Mag. 2005;26:53.
    • (2005) AI Mag. , vol.26 , pp. 53
    • Buchanan, B.G.1
  • 7
    • 84947466043 scopus 로고    scopus 로고
    • Machine learning in medicine
    • Deo RC. Machine learning in medicine. Circulation. 2015;132:1920-1930.
    • (2015) Circulation. , vol.132 , pp. 1920-1930
    • Deo, R.C.1
  • 10
    • 84901870499 scopus 로고    scopus 로고
    • The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas
    • Bothe MK, Dickens L, Reichel K, et al. The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas. Expert Rev Med Devices. 2013;10:661-673.
    • (2013) Expert Rev Med Devices. , vol.10 , pp. 661-673
    • Bothe, M.K.1    Dickens, L.2    Reichel, K.3
  • 11
    • 0020001973 scopus 로고
    • An experimental computer-based diagnostic consultant for general internal medicine
    • Miller RA, Pople HEJ, Myers JD, et al. An experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med. 1982;307:468-476.
    • (1982) N Engl J Med. , vol.307 , pp. 468-476
    • Miller, R.A.1    Hej, P.2    Myers, J.D.3
  • 12
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2006;2:59.
    • (2006) Cancer Inform. , vol.2 , pp. 59
    • Cruz, J.A.1    Wishart, D.S.2
  • 13
    • 84994850514 scopus 로고    scopus 로고
    • Data-driven temporal prediction of surgical site infection
    • Soguero-Ruiz C, Fei WM, Jenssen R, et al. Data-driven temporal prediction of surgical site infection. AMIA Annu Symp Proc. 2015;2015:1164-1173.
    • (2015) AMIA Annu Symp Proc. , vol.2015 , pp. 1164-1173
    • Soguero-Ruiz, C.1    Fei, W.M.2    Jenssen, R.3
  • 14
    • 0034086083 scopus 로고    scopus 로고
    • Strategies for improving comorbidity measures based on Medicare and Medicaid claims data
    • Wang PS, Walker A, Tsuang M, et al. Strategies for improving comorbidity measures based on Medicare and Medicaid claims data. J Clin Epidemiol. 2000;53:571-578.
    • (2000) J Clin Epidemiol. , vol.53 , pp. 571-578
    • Wang, P.S.1    Walker, A.2    Tsuang, M.3
  • 15
    • 85050202814 scopus 로고    scopus 로고
    • Classifying lung cancer severity with ensemble machine learning in health care claims data
    • Bergquist S, Brooks G, Keating N, et al. Classifying lung cancer severity with ensemble machine learning in health care claims data. Proc Mach Learn Res. 2017;68:25-38.
    • (2017) Proc Mach Learn Res. , vol.68 , pp. 25-38
    • Bergquist, S.1    Brooks, G.2    Keating, N.3
  • 17
    • 80052063328 scopus 로고    scopus 로고
    • Automated identification of postoperative complications within an electronic medical record using natural language processing
    • Murff HJ, FitzHenry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA. 2011;306:848-855.
    • (2011) JAMA. , vol.306 , pp. 848-855
    • Murff, H.J.1    Fitzhenry, F.2    Matheny, M.E.3
  • 18
    • 21544453050 scopus 로고    scopus 로고
    • Automated detection of adverse events using natural language processing of discharge summaries
    • Melton GB, Hripcsak G. Automated detection of adverse events using natural language processing of discharge summaries. J Am Med Inform Assoc. 2005;12:448-457.
    • (2005) J Am Med Inform Assoc. , vol.12 , pp. 448-457
    • Melton, G.B.1    Hripcsak, G.2
  • 19
    • 4544280638 scopus 로고    scopus 로고
    • Automated encoding of clinical documents based on natural language processing
    • Friedman C, Shagina L, Lussier Y, et al. Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc. 2004;11:392-402.
    • (2004) J Am Med Inform Assoc. , vol.11 , pp. 392-402
    • Friedman, C.1    Shagina, L.2    Lussier, Y.3
  • 20
    • 84986608457 scopus 로고    scopus 로고
    • Support vector feature selection for early detection of anastomosis leakage from bag-of-words in electronic health records
    • Soguero-Ruiz C, Hindberg K, Rojo-Alvarez JL, et al. Support vector feature selection for early detection of anastomosis leakage from bag-of-words in electronic health records. IEEE J Biomed Health Inform. 2016;20:1404-1415.
    • (2016) IEEE J Biomed Health Inform. , vol.20 , pp. 1404-1415
    • Soguero-Ruiz, C.1    Hindberg, K.2    Rojo-Alvarez, J.L.3
  • 21
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527-1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 22
    • 33845502065 scopus 로고    scopus 로고
    • Identification of severe acute pancreatitis using an artificial neural network
    • Modifi R, Duff MD, Madhavan KK, et al. Identification of severe acute pancreatitis using an artificial neural network. Surgery. 2007;141:59-66.
    • (2007) Surgery. , vol.141 , pp. 59-66
    • Modifi, R.1    Duff, M.D.2    Madhavan, K.K.3
  • 23
    • 84978428149 scopus 로고    scopus 로고
    • Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm
    • Monsalve-Torra A, Ruiz-Fernandez D, Marin-Alonso O, et al. Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm. J Biomed Inform. 2016;62: 195-201.
    • (2016) J Biomed Inform. , vol.62 , pp. 195-201
    • Monsalve-Torra, A.1    Ruiz-Fernandez, D.2    Marin-Alonso, O.3
  • 25
    • 84940007967 scopus 로고    scopus 로고
    • Computer-assisted abdominal surgery: New technologies
    • Kenngott HG, Wagner M, Nickel F, et al. Computer-assisted abdominal surgery: new technologies. Langenbecks Arch Surg. 2015;400:273-281.
    • (2015) Langenbecks Arch Surg. , vol.400 , pp. 273-281
    • Kenngott, H.G.1    Wagner, M.2    Nickel, F.3
  • 29
    • 84938528763 scopus 로고    scopus 로고
    • Characterising "near miss" events in complex laparoscopic surgery through video analysis
    • Bonrath EM, Gordon LE, Grantcharov TP. Characterising "near miss" events in complex laparoscopic surgery through video analysis. BMJ Qual Saf. 2015;24:516-521.
    • (2015) BMJ Qual Saf. , vol.24 , pp. 516-521
    • Bonrath, E.M.1    Gordon, L.E.2    Grantcharov, T.P.3
  • 30
    • 84954349090 scopus 로고    scopus 로고
    • Using surgical video to improve technique and skill
    • Grenda TR, Pradarelli JC, Dimick JB. Using surgical video to improve technique and skill. Ann Surg. 2016;264:32-33.
    • (2016) Ann Surg. , vol.264 , pp. 32-33
    • Grenda, T.R.1    Pradarelli, J.C.2    Dimick, J.B.3
  • 33
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115-118.
    • (2017) Nature. , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 34
    • 84962333241 scopus 로고    scopus 로고
    • Predicting colorectal surgical complications using heterogeneous clinical data and kernel methods
    • Soguero-Ruiz C, Hindberg K, Mora-Jimenez I, et al. Predicting colorectal surgical complications using heterogeneous clinical data and kernel methods. J Biomed Inform. 2016;61:87-96.
    • (2016) J Biomed Inform. , vol.61 , pp. 87-96
    • Soguero-Ruiz, C.1    Hindberg, K.2    Mora-Jimenez, I.3
  • 35
    • 84996486504 scopus 로고    scopus 로고
    • Recognizing surgical activities with recurrent neural networks
    • Ourselin S Joskowicz L Sabuncu M et al. eds Cham: Springer International Publishing
    • DiPietro R, Lea C, Malpani A, et al. Recognizing surgical activities with recurrent neural networks. In: Ourselin S, Joskowicz L, Sabuncu M, et al., eds. Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing; 2016. 551-558.
    • (2016) Medical Image Computing and Computer-Assisted Intervention , pp. 551-558
    • Dipietro, R.1    Lea, C.2    Malpani, A.3
  • 36
    • 84879888011 scopus 로고    scopus 로고
    • Surgical gesture classification from video and kinematic data
    • Zappella L, Béjar B, Hager G, et al. Surgical gesture classification from video and kinematic data. Med Image Anal. 2013;17:732-745.
    • (2013) Med Image Anal. , vol.17 , pp. 732-745
    • Zappella, L.1    Béjar, B.2    Hager, G.3
  • 37
    • 81955160799 scopus 로고    scopus 로고
    • Evolution of autonomous and semi-autonomous robotic surgical systems: A review of the literature
    • Moustris GP, Hiridis SC, Deliparaschos KM, et al. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot. 2011;7:375-392.
    • (2011) Int J Med Robot. , vol.7 , pp. 375-392
    • Moustris, G.P.1    Hiridis, S.C.2    Deliparaschos, K.M.3
  • 38
    • 84969980426 scopus 로고    scopus 로고
    • Supervised autonomous robotic soft tissue surgery
    • Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016;8:337ra64-1337ra.
    • (2016) Sci Transl Med. , vol.8 , pp. 337ra64-1337ra
    • Shademan, A.1    Decker, R.S.2    Opfermann, J.D.3
  • 40
    • 78349274046 scopus 로고    scopus 로고
    • Logistic regression had superior performance compared with regression trees for predicting in-hospital mortality in patients hospitalized with heart failure
    • Austin PC, Tu JV, Lee DS. Logistic regression had superior performance compared with regression trees for predicting in-hospital mortality in patients hospitalized with heart failure. J Clin Epidemiol. 2010;63: 1145-1155.
    • (2010) J Clin Epidemiol. , vol.63 , pp. 1145-1155
    • Austin, P.C.1    Tu, J.V.2    Lee, D.S.3
  • 42
    • 84934319904 scopus 로고    scopus 로고
    • Discovery with Data: Leveraging Statistics with Computer Science to Transform Science and Society
    • Rudin C, Dunson D, Irizarry R, et al. Discovery with Data: Leveraging Statistics with Computer Science to Transform Science and Society. In: American Statistical Association White Paper; 2014.
    • (2014) American Statistical Association White Paper
    • Rudin, C.1    Dunson, D.2    Irizarry, R.3
  • 44
    • 0035822324 scopus 로고    scopus 로고
    • Systematic reviews in health care: Assessing the quality of controlled clinical trials
    • Jüni P, Altman DG, Egger M. Systematic reviews in health care: assessing the quality of controlled clinical trials. BMJ. 2001;323:42-46.
    • (2001) BMJ. , vol.323 , pp. 42-46
    • Jüni, P.1    Altman, D.G.2    Egger, M.3
  • 45
    • 69349099139 scopus 로고    scopus 로고
    • Publication bias in clinical trials due to statistical significance or direction of trial results
    • Hopewell S, Loudon K, Clarke MJ, et al. Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst Rev. 2009;1:MR000006.
    • (2009) Cochrane Database Syst Rev. , vol.1 , pp. MR000006
    • Hopewell, S.1    Loudon, K.2    Clarke, M.J.3
  • 46
    • 2642573558 scopus 로고    scopus 로고
    • Participation in cancer clinical trials: Race-, sex-, and age-based disparities
    • Murthy VH, Krumholz HM, Gross CP. Participation in cancer clinical trials: race-, sex-, and age-based disparities. JAMA. 2004;291:2720-2726.
    • (2004) JAMA. , vol.291 , pp. 2720-2726
    • Murthy, V.H.1    Krumholz, H.M.2    Gross, C.P.3
  • 47
    • 34250348000 scopus 로고    scopus 로고
    • Gender bias in cardiovascular testing persists after adjustment for presenting characteristics and cardiac risk
    • Chang AM, Mumma B, Sease KL, et al. Gender bias in cardiovascular testing persists after adjustment for presenting characteristics and cardiac risk. Acad Emerg Med. 2007;14:599-605.
    • (2007) Acad Emerg Med. , vol.14 , pp. 599-605
    • Chang, A.M.1    Mumma, B.2    Sease, K.L.3
  • 48
    • 0030590027 scopus 로고    scopus 로고
    • The evaluation of chest pain in women
    • Douglas PS, Ginsburg GS. The evaluation of chest pain in women. N Engl J Med. 1996;334:1311-1315.
    • (1996) N Engl J Med. , vol.334 , pp. 1311-1315
    • Douglas, P.S.1    Ginsburg, G.S.2
  • 49
    • 85042155331 scopus 로고    scopus 로고
    • ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases
    • Wang X, Peng Y, Lu L, et al. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. In: IEEE CVPR, Honolulu, HI: 2017.
    • (2017) IEEE CVPR, Honolulu, HI
    • Wang, X.1    Peng, Y.2    Lu, L.3
  • 52
    • 84877827546 scopus 로고    scopus 로고
    • Opening the black box: Low-dimensional dynamics in high-dimensional recurrent neural networks
    • Sussillo D, Barak O. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 2013;25: 626-649.
    • (2013) Neural Comput. , vol.25 , pp. 626-649
    • Sussillo, D.1    Barak, O.2
  • 53
    • 85027869169 scopus 로고    scopus 로고
    • Unintended consequences of machine learning in medicine
    • Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017;318:517-518.
    • (2017) JAMA. , vol.318 , pp. 517-518
    • Cabitza, F.1    Rasoini, R.2    Gensini, G.F.3
  • 54
    • 84993965279 scopus 로고    scopus 로고
    • Interpretable deep neural networks for single-trial EEG classification
    • Sturm I, Lapuschkin S, Samek W, et al. Interpretable deep neural networks for single-trial EEG classification. J Neurosci Methods. 2016;274:141-145.
    • (2016) J Neurosci Methods. , vol.274 , pp. 141-145
    • Sturm, I.1    Lapuschkin, S.2    Samek, W.3
  • 58
    • 85050252144 scopus 로고    scopus 로고
    • High-risk breast lesions: A machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision
    • Epub ahead of print
    • Bahl M, Barzilay R, Yedidia AB, et al. High-risk breast lesions: a machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology; 0:170549. Epub ahead of print.
    • Radiology , pp. 170549
    • Bahl, M.1    Barzilay, R.2    Yedidia, A.B.3
  • 59
    • 85012969564 scopus 로고    scopus 로고
    • Usability evaluation of a blood glucose monitoring system with a spill-resistant vial, easier strip handling, and connectivity to a mobile app: Improvement of patient convenience and satisfaction
    • Harvey C, Koubek R, Begat V, et al. usability evaluation of a blood glucose monitoring system with a spill-resistant vial, easier strip handling, and connectivity to a mobile app: improvement of patient convenience and satisfaction. J Diabetes Sci Technol. 2016;10:1136-1141.
    • (2016) J Diabetes Sci Technol. , vol.10 , pp. 1136-1141
    • Harvey, C.1    Koubek, R.2    Begat, V.3
  • 60
    • 85047124079 scopus 로고    scopus 로고
    • Designing patient-centered text messaging interventions for increasing physical activity among participants with type 2 diabetes: Qualitative results from the text to move intervention
    • Horner GN, Agboola S, Jethwani K, et al. Designing patient-centered text messaging interventions for increasing physical activity among participants with type 2 diabetes: qualitative results from the text to move intervention. JMIR Mhealth Uhealth. 2017;5:e54.
    • (2017) JMIR Mhealth Uhealth. , vol.5 , pp. e54
    • Horner, G.N.1    Agboola, S.2    Jethwani, K.3
  • 61
    • 85038916150 scopus 로고    scopus 로고
    • Impact of an electronic health record-integrated personal health record on patient participation in health care: Development and randomized controlled trial of MyHealthKeeper
    • Ryu B, Kim N, Heo E, et al. Impact of an electronic health record-integrated personal health record on patient participation in health care: development and randomized controlled trial of MyHealthKeeper. J Med Internet Res. 2017;19:e401.
    • (2017) J Med Internet Res. , vol.19 , pp. e401
    • Ryu, B.1    Kim, N.2    Heo, E.3
  • 62
    • 85023203874 scopus 로고    scopus 로고
    • Nutritional monitoring of patients post-bariatric surgery: Implications for smartphone applications
    • Elvin-Walsh L, Ferguson M, Collins PF. Nutritional monitoring of patients post-bariatric surgery: implications for smartphone applications. J Hum Nutr Diet. 2018;31:141-148.
    • (2018) J Hum Nutr Diet. , vol.31 , pp. 141-148
    • Elvin-Walsh, L.1    Ferguson, M.2    Collins, P.F.3
  • 63
    • 85016059428 scopus 로고    scopus 로고
    • Are we ready for our close-up? Why and how we must embrace video in the or
    • Langerman A, Grantcharov TP. Are we ready for our close-up? Why and how we must embrace video in the OR. Ann Surg. 2017;266:934-936.
    • (2017) Ann Surg. , vol.266 , pp. 934-936
    • Langerman, A.1    Grantcharov, T.P.2
  • 64
    • 85050192950 scopus 로고    scopus 로고
    • Surgical video in the age of big data
    • [Epub ahead of print]
    • Hashimoto DA, Rosman G, Rus D, et al. Surgical video in the age of big data. Ann Surg. 2017 [Epub ahead of print].
    • (2017) Ann Surg.
    • Hashimoto, D.A.1    Rosman, G.2    Rus, D.3
  • 66
    • 84902799705 scopus 로고    scopus 로고
    • Finding the missing link for big biomedi-cal data
    • Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedi-cal data. JAMA. 2014;311:2479-2480.
    • (2014) JAMA. , vol.311 , pp. 2479-2480
    • Weber, G.M.1    Mandl, K.D.2    Kohane, I.S.3
  • 67
    • 84885580128 scopus 로고    scopus 로고
    • Surgical skill and complication rates after bariatric surgery
    • Birkmeyer JD, Finks JF, O'Reilly A, et al. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369:1434-1442.
    • (2013) N Engl J Med. , vol.369 , pp. 1434-1442
    • Birkmeyer, J.D.1    Finks, J.F.2    O'Reilly, A.3
  • 68
    • 84975073320 scopus 로고    scopus 로고
    • Video ratings of surgical skill and late outcomes of bariatric surgery
    • Scally CP, Varban OA, Carlin AM, et al. Video ratings of surgical skill and late outcomes of bariatric surgery. JAMA Surg. 2016;151:e160428.
    • (2016) JAMA Surg. , vol.151 , pp. e160428
    • Scally, C.P.1    Varban, O.A.2    Carlin, A.M.3
  • 69
    • 84859916596 scopus 로고    scopus 로고
    • Future medicine shaped by aninterdisciplinary new biology
    • O'Shea P. Future medicine shaped by aninterdisciplinary new biology. Lancet. 2012;379:1544-1550.
    • (2012) Lancet. , vol.379 , pp. 1544-1550
    • O'Shea, P.1
  • 70
    • 0026566658 scopus 로고
    • Four models of the physician-patient relationship
    • Emanuel EJ, Emanuel LL. Four models of the physician-patient relationship. JAMA. 1992;267:2221-2226.
    • (1992) JAMA. , vol.267 , pp. 2221-2226
    • Emanuel, E.J.1    Emanuel, L.L.2
  • 71
    • 84990046464 scopus 로고    scopus 로고
    • Predicting the future-big data, machine learning, and clinical medicine
    • Obermeyer Z, Emanuel EJ. Predicting the future-big data, machine learning, and clinical medicine. N Engl J Med. 2016;375:1216-1219.
    • (2016) N Engl J Med. , vol.375 , pp. 1216-1219
    • Obermeyer, Z.1    Emanuel, E.J.2
  • 72
    • 1842679306 scopus 로고    scopus 로고
    • Physicians' use of electronic medical records: Barriers and solutions
    • Miller RH, Sim I. Physicians' use of electronic medical records: barriers and solutions. Health Aff. 2004;23:116-126.
    • (2004) Health Aff. , vol.23 , pp. 116-126
    • Miller, R.H.1    Sim, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.