-
3
-
-
84898996071
-
Bayesian inference and learning in gaussian process state-space models with particle MCMC
-
R. Frigola, F. Lindsten, T. B. Schön, and C. Rasmussen. Bayesian inference and learning in Gaussian process state-space models with particle MCMC. In Advances in Neural Information Processing Systems, volume 26, pages 3156–3164, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, vol.26
, pp. 3156-3164
-
-
Frigola, R.1
Lindsten, F.2
Schön, T.B.3
Rasmussen, C.4
-
5
-
-
84929661011
-
Variational gaussian process state-space models
-
R. Frigola, Y. Chen, and C. Rasmussen. Variational Gaussian process state-space models. In Advances in Neural Information Processing Systems, volume 27, pages 3680–3688, 2014b.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 3680-3688
-
-
Frigola, R.1
Chen, Y.2
Rasmussen, C.3
-
6
-
-
85083951144
-
Recurrent gaussian processes
-
arXiv preprint To be San Juan, Puerto Rico, May 2016
-
th International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, May 2016.
-
(2016)
th International Conference on Learning Representations (ICLR)
-
-
Mattos, C.L.C.1
Dai, Z.2
Damianou, A.3
Forth, J.4
Barreto, G.A.5
Lawrence, N.D.6
-
9
-
-
84920973635
-
Gaussian processes for data-efficient learning in robotics and control
-
M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes for data-efficient learning in robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408–423, 2015.
-
(2015)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.37
, Issue.2
, pp. 408-423
-
-
Deisenroth, M.P.1
Fox, D.2
Rasmussen, C.E.3
-
12
-
-
0029483769
-
Nonlinear black-box modeling in system identification: A unified overview
-
J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y. Glorennec, H. Hjalmarsson, and A. Juditsky. Nonlinear black-box modeling in system identification: a unified overview. Automatica, 31(12):1691–1724, 1995.
-
(1995)
Automatica
, vol.31
, Issue.12
, pp. 1691-1724
-
-
Sjöberg, J.1
Zhang, Q.2
Ljung, L.3
Benveniste, A.4
Delyon, B.5
Glorennec, P.-Y.6
Hjalmarsson, H.7
Juditsky, A.8
-
14
-
-
85067563754
-
-
The MathWorks, Inc
-
TM, 2015. Available at http://mathworks.com/help/ident/examples/nonlinearmodeling-of-a-magneto-rheological-fluid-damper.html.
-
(2015)
TM
-
-
-
16
-
-
37549055132
-
Gaussian process dynamical models for human motion
-
J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):283–298, 2008.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, Issue.2
, pp. 283-298
-
-
Wang, J.M.1
Fleet, D.J.2
Hertzmann, A.3
-
17
-
-
85162388879
-
Variational gaussian process dynamical systems
-
A. Damianou, M. K. Titsias, and N. D. Lawrence. Variational Gaussian process dynamical systems. In Advances in Neural Information Processing Systems, volume 24, pages 2510–2518, 2011.
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
, pp. 2510-2518
-
-
Damianou, A.1
Titsias, M.K.2
Lawrence, N.D.3
-
18
-
-
84863002086
-
Robust filtering and smoothing with gaussian processes
-
M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D. Hanebeck, and C. E. Rasmussen. Robust filtering and smoothing with Gaussian processes. IEEE Transactions on Automatic Control, 57(7):1865–1871, 2012.
-
(2012)
IEEE Transactions on Automatic Control
, vol.57
, Issue.7
, pp. 1865-1871
-
-
Deisenroth, M.P.1
Turner, R.D.2
Huber, M.F.3
Hanebeck, U.D.4
Rasmussen, C.E.5
-
21
-
-
84904326833
-
Particle gibbs with ancestor sampling
-
F. Lindsten, M. I. Jordan, and T. B. Schön. Particle Gibbs with ancestor sampling. Journal of Machine Learning Research, 15(1):2145–2184, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 2145-2184
-
-
Lindsten, F.1
Jordan, M.I.2
Schön, T.B.3
-
23
-
-
77954665893
-
Sparse spectrum gaussian process regression
-
M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal. Sparse spectrum Gaussian process regression. Journal of Machine Learning Research, 11(1):1865–1881, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, Issue.1
, pp. 1865-1881
-
-
Lázaro-Gredilla, M.1
Quiñonero-Candela, J.2
Rasmussen, C.E.3
Figueiras-Vidal, A.R.4
-
24
-
-
77953523599
-
Particle markov chain monte carlo methods
-
C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72 (3):269–342, 2010.
-
(2010)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.72
, Issue.3
, pp. 269-342
-
-
Andrieu, C.1
Doucet, A.2
Holenstein, R.3
-
25
-
-
77951131231
-
A tutorial on particle filtering and smoothing: Fifteen years later
-
D. Crisan and B. Rozovsky, editors, Oxford University Press, Oxford
-
A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fifteen years later. In D. Crisan and B. Rozovsky, editors, Nonlinear Filtering Handbook, pages 656–704. Oxford University Press, Oxford, 2011.
-
(2011)
Nonlinear Filtering Handbook
, pp. 656-704
-
-
Doucet, A.1
Johansen, A.M.2
-
26
-
-
67651149758
-
Identification of hammerstein systems without explicit parameterisation of non-linearity
-
J. Wang, A. Sano, T. Chen, and B. Huang. Identification of hammerstein systems without explicit parameterisation of non-linearity. International Journal of Control, 82(5): 937–952, 2009.
-
(2009)
International Journal of Control
, vol.82
, Issue.5
, pp. 937-952
-
-
Wang, J.1
Sano, A.2
Chen, T.3
Huang, B.4
-
29
-
-
84898952981
-
Approximate gaussian process inference for the drift of stochastic differential equations
-
A. Ruttor, P. Batz, and M. Opper. Approximate Gaussian process inference for the drift of stochastic differential equations. In Advances in Neural Information Processing Systems, volume 26, pages 2040–2048, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, vol.26
, pp. 2040-2048
-
-
Ruttor, A.1
Batz, P.2
Opper, M.3
-
31
-
-
0000576595
-
Markov chains for exploring posterior distributions
-
L. Tierney. Markov chains for exploring posterior distributions. Annals of Statistics, pages 1701–1728, 1994.
-
(1994)
Annals of Statistics
, pp. 1701-1728
-
-
Tierney, L.1
|