메뉴 건너뛰기




Volumn 19, Issue , 2014, Pages 4097-4102

Identification of Gaussian process state-space models with particle stochastic approximation EM

Author keywords

Bayesian; Gaussian processes; Non parametric identification; System identification

Indexed keywords

APPROXIMATION ALGORITHMS; APPROXIMATION THEORY; AUTOMATION; DYNAMICAL SYSTEMS; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); IDENTIFICATION (CONTROL SYSTEMS); MARKOV PROCESSES; MAXIMUM LIKELIHOOD; MONTE CARLO METHODS; NONLINEAR DYNAMICAL SYSTEMS; STATE SPACE METHODS; STOCHASTIC CONTROL SYSTEMS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84929773403     PISSN: 14746670     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3182/20140824-6-za-1003.01843     Document Type: Conference Paper
Times cited : (20)

References (21)
  • 5
    • 84887418482 scopus 로고    scopus 로고
    • Expectation propagation in Gaussian process dynamical systems
    • P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors
    • M. P. Deisenroth and S. Mohamed. Expectation Propagation in Gaussian process dynamical systems. In P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems (NIPS) 25, pages 2618-2626. 2012.
    • (2012) Advances in Neural Information Processing Systems (NIPS) , vol.25 , pp. 2618-2626
    • Deisenroth, M.P.1    Mohamed, S.2
  • 7
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • B. Delyon, M. Lavielle, and E. Moulines. Convergence of a stochastic approximation version of the EM algorithm. The Annals of Statistics, 27(1):pp. 94-128, 1999.
    • (1999) The Annals of Statistics , vol.27 , Issue.1 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 9
    • 77951131231 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: Fifteen years later
    • D. Crisan and B. Rozovskii, editors Oxford University Press
    • A. Doucet and A. Johansen. A tutorial on particle filtering and smoothing: Fifteen years later. In D. Crisan and B. Rozovskii, editors, The Oxford Handbook of Nonlinear Filtering. Oxford University Press, 2011.
    • (2011) The Oxford Handbook of Nonlinear Filtering
    • Doucet, A.1    Johansen, A.2
  • 10
    • 84898996071 scopus 로고    scopus 로고
    • Bayesian inference and learning in Gaussian process state-space models with particle MCMC
    • L. Bottou, C.J.C. Burges, Z. Ghahramani, M. Welling, and K.Q. Weinberger, editors
    • R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen. Bayesian inference and learning in Gaussian process state-space models with particle MCMC. In L. Bottou, C.J.C. Burges, Z. Ghahramani, M. Welling, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems (NIPS) 26. 2013.
    • (2013) Advances in Neural Information Processing Systems (NIPS) , vol.26
    • Frigola, R.1    Lindsten, F.2    Schön, T.B.3    Rasmussen, C.E.4
  • 12
    • 77955745818 scopus 로고    scopus 로고
    • Particle filter theory and practice with positioning applications
    • F. Gustafsson. Particle filter theory and practice with positioning applications. IEEE Aerospace and Electronic Systems Magazine, 25(7):53-82, 2010.
    • (2010) IEEE Aerospace and Electronic Systems Magazine , vol.25 , Issue.7 , pp. 53-82
    • Gustafsson, F.1
  • 13
    • 79951555580 scopus 로고    scopus 로고
    • Learning GP-bayesfilters via Gaussian process latent variable models
    • J. Ko and D. Fox. Learning GP-BayesFilters via Gaussian process latent variable models. Autonomous Robots, 30 (1):3-23, 2011.
    • (2011) Autonomous Robots , vol.30 , Issue.1 , pp. 3-23
    • Ko, J.1    Fox, D.2
  • 15
    • 84887937591 scopus 로고    scopus 로고
    • Backward simulation methods for Monte Carlo statistical inference
    • F. Lindsten and T. B. Schön. Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends in Machine Learning, 6(1):1-143, 2013.
    • (2013) Foundations and Trends in Machine Learning , vol.6 , Issue.1 , pp. 1-143
    • Lindsten, F.1    Schön, T.B.2
  • 16
    • 84887880057 scopus 로고    scopus 로고
    • Ancestor sampling for particle gibbs
    • P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors
    • F. Lindsten, M. Jordan, and T. B. Schön. Ancestor sampling for particle Gibbs. In P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems (NIPS) 25, pages 2600-2608. 2012.
    • (2012) Advances in Neural Information Processing Systems (NIPS) , vol.25 , pp. 2600-2608
    • Lindsten, F.1    Jordan, M.2    Schön, T.B.3
  • 17
    • 41449089271 scopus 로고    scopus 로고
    • Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state-space models
    • J. Olsson, R. Douc, O. Cappé, and E. Moulines. Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state-space models. Bernoulli, 14(1):155-179, 2008.
    • (2008) Bernoulli , vol.14 , Issue.1 , pp. 155-179
    • Olsson, J.1    Douc, R.2    Cappé, O.3    Moulines, E.4
  • 18
    • 0019476933 scopus 로고
    • Bayesian system identification
    • V. Peterka. Bayesian system identification. Automatica, 17(1):41-53, 1981.
    • (1981) Automatica , vol.17 , Issue.1 , pp. 41-53
    • Peterka, V.1
  • 20
    • 78650803456 scopus 로고    scopus 로고
    • System identification of nonlinear state-space models
    • T. B. Schön, A. Wills, and B. Ninness. System identification of nonlinear state-space models. Automatica, 47 (1):39-49, 2011.
    • (2011) Automatica , vol.47 , Issue.1 , pp. 39-49
    • Schön, T.B.1    Wills, A.2    Ninness, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.