-
2
-
-
84899013244
-
Streaming variational bayes
-
Curran Associates, Inc.
-
Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael Jordan. Streaming variational Bayes. In Advances in Neural Information Processing Systems 26, pages 1727-1735. Curran Associates, Inc., 2013.
-
(2013)
Advances in Neural Information Processing Systems
, vol.26
, pp. 1727-1735
-
-
Broderick, T.1
Boyd, N.2
Wibisono, A.3
Wilson, A.C.4
Jordan, M.5
-
3
-
-
0032530363
-
A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells
-
Emery N. Brown, Loren M. Frank, Dengda Tang, Michael C. Quirk, and Matthew A. Wilson. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. The Journal of Neuroscience, 18(18): 7411-7425, 1998.
-
(1998)
The Journal of Neuroscience
, vol.18
, Issue.18
, pp. 7411-7425
-
-
Brown, E.N.1
Frank, L.M.2
Tang, D.3
Quirk, M.C.4
Wilson, M.A.5
-
5
-
-
70349243080
-
Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
-
J. Daunizeau, K.J. Friston, and S.J. Kiebel. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D: Nonlinear Phenomena, 238(21): 2089-2118, 2009.
-
(2009)
Physica D: Nonlinear Phenomena
, vol.238
, Issue.21
, pp. 2089-2118
-
-
Daunizeau, J.1
Friston, K.J.2
Kiebel, S.J.3
-
7
-
-
84863002086
-
Robust filtering and smoothing with Gaussian processes
-
M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D. Hanebeck, and C. E. Rasmussen. Robust filtering and smoothing with Gaussian processes. IEEE Transactions on Automatic Control, 57(7): 1865-1871, 2012.
-
(2012)
IEEE Transactions on Automatic Control
, vol.57
, Issue.7
, pp. 1865-1871
-
-
Deisenroth, M.P.1
Turner, R.D.2
Huber, M.F.3
Hanebeck, U.D.4
Rasmussen, C.E.5
-
10
-
-
84878919168
-
Stochastic variational inference
-
Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. The Journal of Machine Learning Research, 14(1): 1303-1347, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
13
-
-
84887937591
-
Backward simulation methods for Monte Carlo statistical inference
-
Fredrik Lindsten and Thomas B. Schön. Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends in Machine Learning, 6(1): 1-143, 2013.
-
(2013)
Foundations and Trends in Machine Learning
, vol.6
, Issue.1
, pp. 1-143
-
-
Lindsten, F.1
Schön, T.B.2
-
14
-
-
84900313671
-
-
CRCNS.org
-
K. Mizuseki, A. Sirota, E. Pastalkova, K. Diba, and G. Buzski. Multiple single unit recordings from different rat hippocampal and entorhinal regions while the animals were performing multiple behavioral tasks. CRCNS.org. http://dx.doi.org/10.6080/K09G5JRZ, 2013.
-
(2013)
Multiple Single Unit Recordings from Different Rat Hippocampal and Entorhinal Regions While the Animals were Performing Multiple Behavioral Tasks
-
-
Mizuseki, K.1
Sirota, A.2
Pastalkova, E.3
Diba, K.4
Buzski, G.5
-
15
-
-
0006885798
-
A Bayesian approach to on-line learning
-
David Saad, editor Cambridge University Press
-
Manfred Opper. A bayesian approach to on-line learning. In David Saad, editor, On-Line Learning in Neural Networks. Cambridge University Press, 1998.
-
(1998)
On-Line Learning in Neural Networks
-
-
Opper, M.1
-
17
-
-
17644428305
-
Propagation of uncertainty in Bayesian kernel models - Application to multiple-step ahead forecasting
-
2003 IEEE International Conference on Vol.2, April
-
J. Quiñonero Candela, A Girard, J. Larsen, and C.E. Rasmussen. Propagation of uncertainty in Bayesian kernel models - application to multiple-step ahead forecasting. In Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03). 2003 IEEE International Conference on, Volume 2, pages II-701-4 Vol.2, April 2003.
-
(2003)
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03)
, vol.2
, pp. II701-II704
-
-
Quiñonero Candela, J.1
Girard, A.2
Larsen, J.3
Rasmussen, C.E.4
-
23
-
-
84862287145
-
State-space inference and learning with Gaussian processes
-
Yee Whye Teh and Mike Titterington, editors Chia Laguna, Sardinia, Italy
-
R. Turner, M. P. Deisenroth, and C. E. Rasmussen. State-space inference and learning with Gaussian processes. In Yee Whye Teh and Mike Titterington, editors, 13th International Conference on Artificial Intelligence and Statistics, volume 9 of W&CP, pages 868-875, Chia Laguna, Sardinia, Italy, 2010.
-
(2010)
13th International Conference on Artificial Intelligence and Statistics, Volume 9 of W&CP
, pp. 868-875
-
-
Turner, R.1
Deisenroth, M.P.2
Rasmussen, C.E.3
-
24
-
-
0038132747
-
An unsupervised ensemble learning method for nonlinear dynamic state-space models
-
Harri Valpola and Juha Karhunen. An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural Computation, 14(11): 2647-2692, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.11
, pp. 2647-2692
-
-
Valpola, H.1
Karhunen, J.2
-
25
-
-
84864069214
-
Gaussian process dynamical models
-
MIT Press, Cambridge, MA
-
J.M. Wang, D.J. Fleet, and A. Hertzmann. Gaussian process dynamical models. In Advances in Neural Information Processing Systems (NIPS) 18, pages 1441-1448. MIT Press, Cambridge, MA, 2006.
-
(2006)
Advances in Neural Information Processing Systems (NIPS)
, vol.18
, pp. 1441-1448
-
-
Wang, J.M.1
Fleet, D.J.2
Hertzmann, A.3
|