메뉴 건너뛰기




Volumn 4, Issue January, 2014, Pages 3680-3688

Variational Gaussian process state-space models

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMICAL SYSTEMS; ECONOMIC AND SOCIAL EFFECTS; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); INFERENCE ENGINES; INFORMATION SCIENCE; NONLINEAR DYNAMICAL SYSTEMS; SPEECH ENHANCEMENT; STOCHASTIC SYSTEMS;

EID: 84929661011     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (198)

References (25)
  • 3
    • 0032530363 scopus 로고    scopus 로고
    • A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells
    • Emery N. Brown, Loren M. Frank, Dengda Tang, Michael C. Quirk, and Matthew A. Wilson. A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. The Journal of Neuroscience, 18(18): 7411-7425, 1998.
    • (1998) The Journal of Neuroscience , vol.18 , Issue.18 , pp. 7411-7425
    • Brown, E.N.1    Frank, L.M.2    Tang, D.3    Quirk, M.C.4    Wilson, M.A.5
  • 5
    • 70349243080 scopus 로고    scopus 로고
    • Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models
    • J. Daunizeau, K.J. Friston, and S.J. Kiebel. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D: Nonlinear Phenomena, 238(21): 2089-2118, 2009.
    • (2009) Physica D: Nonlinear Phenomena , vol.238 , Issue.21 , pp. 2089-2118
    • Daunizeau, J.1    Friston, K.J.2    Kiebel, S.J.3
  • 13
    • 84887937591 scopus 로고    scopus 로고
    • Backward simulation methods for Monte Carlo statistical inference
    • Fredrik Lindsten and Thomas B. Schön. Backward simulation methods for Monte Carlo statistical inference. Foundations and Trends in Machine Learning, 6(1): 1-143, 2013.
    • (2013) Foundations and Trends in Machine Learning , vol.6 , Issue.1 , pp. 1-143
    • Lindsten, F.1    Schön, T.B.2
  • 15
    • 0006885798 scopus 로고    scopus 로고
    • A Bayesian approach to on-line learning
    • David Saad, editor Cambridge University Press
    • Manfred Opper. A bayesian approach to on-line learning. In David Saad, editor, On-Line Learning in Neural Networks. Cambridge University Press, 1998.
    • (1998) On-Line Learning in Neural Networks
    • Opper, M.1
  • 17
    • 17644428305 scopus 로고    scopus 로고
    • Propagation of uncertainty in Bayesian kernel models - Application to multiple-step ahead forecasting
    • 2003 IEEE International Conference on Vol.2, April
    • J. Quiñonero Candela, A Girard, J. Larsen, and C.E. Rasmussen. Propagation of uncertainty in Bayesian kernel models - application to multiple-step ahead forecasting. In Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03). 2003 IEEE International Conference on, Volume 2, pages II-701-4 Vol.2, April 2003.
    • (2003) Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03) , vol.2 , pp. II701-II704
    • Quiñonero Candela, J.1    Girard, A.2    Larsen, J.3    Rasmussen, C.E.4
  • 24
    • 0038132747 scopus 로고    scopus 로고
    • An unsupervised ensemble learning method for nonlinear dynamic state-space models
    • Harri Valpola and Juha Karhunen. An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural Computation, 14(11): 2647-2692, 2002.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2647-2692
    • Valpola, H.1    Karhunen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.