메뉴 건너뛰기




Volumn 9, Issue , 2010, Pages 868-875

State-space inference and learning with Gaussian processes

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMICS MODELS; EXPECTATION-MAXIMIZATION ALGORITHMS; GAUSSIAN PROCESSES; GENERAL METHODOLOGIES; NON-PARAMETRIC; NONLINEAR STATE SPACE MODELS; STATE-SPACE; UNSOLVED PROBLEMS;

EID: 84862287145     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (80)

References (21)
  • 6
    • 27844480834 scopus 로고    scopus 로고
    • Unsupervised variational Bayesian learning of nonlinear models
    • Saul, L. K., Weiss, Y., and Bottou, L.,. MIT Press, Cambridge, MA editors
    • Honkela, A. and Valpola, H. (2005). Unsupervised variational Bayesian learning of nonlinear models. In Saul, L. K., Weiss, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems 17, pp. 593-600. MIT Press, Cambridge, MA.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 593-600
    • Honkela, A.1    Valpola, H.2
  • 8
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME - Journal of Basic Engineering, 82(Series D):35-45.
    • (1960) Transactions of the ASME - Journal of Basic Engineering , vol.82 , Issue.SERIES D , pp. 35-45
    • Kalman, R.E.1
  • 9
    • 67650998865 scopus 로고    scopus 로고
    • GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models
    • Ko, J. and Fox, D. (2009a). GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models. Autonomous Robots, 27(1):75-90.
    • (2009) Autonomous Robots , vol.27 , Issue.1 , pp. 75-90
    • Ko, J.1    Fox, D.2
  • 10
    • 79951682709 scopus 로고    scopus 로고
    • Learning GP-bayesfilters via gaussian process latent variable models
    • Seattle, WA, USA
    • Ko, J. and Fox, D. (2009b). Learning GP-BayesFilters via Gaussian Process Latent Variable Models. In Proceedings of Robotics: Science and Systems, Seattle, WA, USA.
    • (2009) Proceedings of Robotics: Science and Systems
    • Ko, J.1    Fox, D.2
  • 11
    • 0003215719 scopus 로고
    • Stochastic models, estimation, and control
    • Academic Press, Inc.
    • Maybeck, P. S. (1979). Stochastic Models, Estimation, and Control, vol. 141 of Mathematics in Science and Engineering. Academic Press, Inc.
    • (1979) Mathematics in Science and Engineering , vol.141
    • Maybeck, P.S.1
  • 13
    • 0006885798 scopus 로고    scopus 로고
    • A Bayesian approach to online learning
    • Cambridge University Press
    • Opper, M. (1998). A Bayesian approach to online learning. In Online Learning in Neural Networks, pages 363-378. Cambridge University Press.
    • (1998) Online Learning in Neural Networks , pp. 363-378
    • Opper, M.1
  • 14
    • 17644428305 scopus 로고    scopus 로고
    • Propagation of uncertainty in Bayesian kernel models-application to multiple-step ahead forecasting
    • Quiñonero-Candela, J., Girard, A., Larsen, J., and Rasmussen, C. E. (2003). Propagation of uncertainty in Bayesian kernel models-application to multiple-step ahead forecasting. In ICASSP 2003, vol. 2, pp. 701-704.
    • (2003) ICASSP 2003 , vol.2 , pp. 701-704
    • Quiñonero-Candela, J.1    Girard, A.2    Larsen, J.3    Rasmussen, C.E.4
  • 15
    • 0024610919 scopus 로고
    • A tutorial on HMM and selected applications in speech recognition
    • Rabiner, L. (1989). A tutorial on HMM and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-286.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.1
  • 17
    • 21644483999 scopus 로고
    • Maximum likelihood estimates of linear dynamical systems
    • Rauch, H. E., Tung, F., and Striebel, C. T. (1965). Maximum Likelihood Estimates of Linear Dynamical Systems. AIAA Journal, 3:1445-1450.
    • (1965) AIAA Journal , vol.3 , pp. 1445-1450
    • Rauch, H.E.1    Tung, F.2    Striebel, C.T.3
  • 21
    • 27844550751 scopus 로고    scopus 로고
    • Novel approximations for inference in nonlinear dynamical systems using expectation propagation
    • Ypma, A. and Heskes, T. (2005). Novel approximations for inference in nonlinear dynamical systems using expectation propagation. Neurocomputing, 69:85-99.
    • (2005) Neurocomputing , vol.69 , pp. 85-99
    • Ypma, A.1    Heskes, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.