-
1
-
-
0002436850
-
Tractable inference for complex stochastic processes
-
San Francisco, CA, USA. Morgan Kaufmann
-
Boyen, X. and Koller, D. (1998). Tractable inference for complex stochastic processes. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998), pp. 33-42, San Francisco, CA, USA. Morgan Kaufmann.
-
(1998)
Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 1998)
, pp. 33-42
-
-
Boyen, X.1
Koller, D.2
-
2
-
-
71149106437
-
Analytic moment-based Gaussian process filtering
-
Montreal, QC, Canada. Omnipress
-
Deisenroth, M. P., Huber, M. F., and Hanebeck, U. D. (2009). Analytic moment-based Gaussian process filtering. Proceedings of the 26th International Conference on Machine Learning, pp. 225-232, Montreal, QC, Canada. Omnipress.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
, pp. 225-232
-
-
Deisenroth, M.P.1
Huber, M.F.2
Hanebeck, U.D.3
-
3
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, series B, 39(1):1-38.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
4
-
-
0004012196
-
-
Second. Chapman & Hall/CRC
-
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis. Second. Chapman & Hall/CRC.
-
(2004)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Rubin, D.B.4
-
6
-
-
27844480834
-
Unsupervised variational Bayesian learning of nonlinear models
-
Saul, L. K., Weiss, Y., and Bottou, L.,. MIT Press, Cambridge, MA editors
-
Honkela, A. and Valpola, H. (2005). Unsupervised variational Bayesian learning of nonlinear models. In Saul, L. K., Weiss, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems 17, pp. 593-600. MIT Press, Cambridge, MA.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 593-600
-
-
Honkela, A.1
Valpola, H.2
-
7
-
-
0031347068
-
A new extension of the Kalman filter to nonlinear systems
-
Orlando, FL, USA
-
Julier, S. J. and Uhlmann, J. K. (1997). A new extension of the Kalman filter to nonlinear systems. In Proceedings of AeroSense: 11th Symposium on Aerospace/Defense Sensing, Simulation and Controls, pp. 182-193, Orlando, FL, USA.
-
(1997)
Proceedings of AeroSense: 11th Symposium on Aerospace/Defense Sensing, Simulation and Controls
, pp. 182-193
-
-
Julier, S.J.1
Uhlmann, J.K.2
-
8
-
-
85024429815
-
A new approach to linear filtering and prediction problems
-
Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME - Journal of Basic Engineering, 82(Series D):35-45.
-
(1960)
Transactions of the ASME - Journal of Basic Engineering
, vol.82
, Issue.SERIES D
, pp. 35-45
-
-
Kalman, R.E.1
-
9
-
-
67650998865
-
GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models
-
Ko, J. and Fox, D. (2009a). GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models. Autonomous Robots, 27(1):75-90.
-
(2009)
Autonomous Robots
, vol.27
, Issue.1
, pp. 75-90
-
-
Ko, J.1
Fox, D.2
-
10
-
-
79951682709
-
Learning GP-bayesfilters via gaussian process latent variable models
-
Seattle, WA, USA
-
Ko, J. and Fox, D. (2009b). Learning GP-BayesFilters via Gaussian Process Latent Variable Models. In Proceedings of Robotics: Science and Systems, Seattle, WA, USA.
-
(2009)
Proceedings of Robotics: Science and Systems
-
-
Ko, J.1
Fox, D.2
-
11
-
-
0003215719
-
Stochastic models, estimation, and control
-
Academic Press, Inc.
-
Maybeck, P. S. (1979). Stochastic Models, Estimation, and Control, vol. 141 of Mathematics in Science and Engineering. Academic Press, Inc.
-
(1979)
Mathematics in Science and Engineering
, vol.141
-
-
Maybeck, P.S.1
-
12
-
-
0038387331
-
-
PhD thesis, MIT, Cambridge, MA, USA
-
Minka, T. P. (2001). A Family of Algorithms for Approximate Bayesian Inference. PhD thesis, MIT, Cambridge, MA, USA.
-
(2001)
A Family of Algorithms for Approximate Bayesian Inference
-
-
Minka, T.P.1
-
13
-
-
0006885798
-
A Bayesian approach to online learning
-
Cambridge University Press
-
Opper, M. (1998). A Bayesian approach to online learning. In Online Learning in Neural Networks, pages 363-378. Cambridge University Press.
-
(1998)
Online Learning in Neural Networks
, pp. 363-378
-
-
Opper, M.1
-
14
-
-
17644428305
-
Propagation of uncertainty in Bayesian kernel models-application to multiple-step ahead forecasting
-
Quiñonero-Candela, J., Girard, A., Larsen, J., and Rasmussen, C. E. (2003). Propagation of uncertainty in Bayesian kernel models-application to multiple-step ahead forecasting. In ICASSP 2003, vol. 2, pp. 701-704.
-
(2003)
ICASSP 2003
, vol.2
, pp. 701-704
-
-
Quiñonero-Candela, J.1
Girard, A.2
Larsen, J.3
Rasmussen, C.E.4
-
15
-
-
0024610919
-
A tutorial on HMM and selected applications in speech recognition
-
Rabiner, L. (1989). A tutorial on HMM and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-286.
-
(1989)
Proceedings of the IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.1
-
17
-
-
21644483999
-
Maximum likelihood estimates of linear dynamical systems
-
Rauch, H. E., Tung, F., and Striebel, C. T. (1965). Maximum Likelihood Estimates of Linear Dynamical Systems. AIAA Journal, 3:1445-1450.
-
(1965)
AIAA Journal
, vol.3
, pp. 1445-1450
-
-
Rauch, H.E.1
Tung, F.2
Striebel, C.T.3
-
20
-
-
37549055132
-
Gaussian process dynamical models for human motion
-
Wang, J. M., Fleet, D. J., and Hertzmann, A. (2008). Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):283-298.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, Issue.2
, pp. 283-298
-
-
Wang, J.M.1
Fleet, D.J.2
Hertzmann, A.3
-
21
-
-
27844550751
-
Novel approximations for inference in nonlinear dynamical systems using expectation propagation
-
Ypma, A. and Heskes, T. (2005). Novel approximations for inference in nonlinear dynamical systems using expectation propagation. Neurocomputing, 69:85-99.
-
(2005)
Neurocomputing
, vol.69
, pp. 85-99
-
-
Ypma, A.1
Heskes, T.2
|