메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 3063-3072

Personalizing Human Video Pose Estimation

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; MOTION ESTIMATION;

EID: 84986244025     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.334     Document Type: Conference Paper
Times cited : (96)

References (49)
  • 2
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Bourdev, L.1    Malik, J.2
  • 3
    • 33845569194 scopus 로고    scopus 로고
    • Interactive feature tracking using K-D trees and dynamic programming
    • A. M. Buchanan and A. W. Fitzgibbon. Interactive feature tracking using K-D trees and dynamic programming. In Proc. CVPR, volume 1, pages 626-633, 2006.
    • (2006) Proc. CVPR , vol.1 , pp. 626-633
    • Buchanan, A.M.1    Fitzgibbon, A.W.2
  • 5
    • 84856688128 scopus 로고    scopus 로고
    • Learning shape models for monocular human pose estimation from the microsoft xbox kinect
    • J. Charles and M. Everingham. Learning shape models for monocular human pose estimation from the microsoft xbox kinect. In ICCV Workshops, 2011.
    • (2011) ICCV Workshops
    • Charles, J.1    Everingham, M.2
  • 6
    • 84907590378 scopus 로고    scopus 로고
    • Automatic and efficient human pose estimation for sign language videos
    • J. Charles, T. Pfister, M. Everingham, and A. Zisserman. Automatic and efficient human pose estimation for sign language videos. IJCV, 2013.
    • (2013) IJCV
    • Charles, J.1    Pfister, T.2    Everingham, M.3    Zisserman, A.4
  • 7
  • 9
    • 84959190635 scopus 로고    scopus 로고
    • Parsing occluded people by flexible compositions
    • X. Chen and A. Yuille. Parsing occluded people by flexible compositions. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Chen, X.1    Yuille, A.2
  • 10
    • 84937873698 scopus 로고    scopus 로고
    • Articulated pose estimation by a graphical model with image dependent pairwise relations
    • X. Chen and A. L. Yuille. Articulated pose estimation by a graphical model with image dependent pairwise relations. In Proc. NIPS, 2014.
    • (2014) Proc. NIPS
    • Chen, X.1    Yuille, A.L.2
  • 12
    • 84870249775 scopus 로고    scopus 로고
    • Adaptive occlusion state estimation for human pose tracking under selfocclusions
    • N.-G. Cho, A. Yuille, and S.-W. Lee. Adaptive occlusion state estimation for human pose tracking under selfocclusions. Pattern Recogn, 46(3):649-661, 2013.
    • (2013) Pattern Recogn , vol.46 , Issue.3 , pp. 649-661
    • Cho, N.-G.1    Yuille, A.2    Lee, S.-W.3
  • 13
    • 84881039921 scopus 로고    scopus 로고
    • Flexible, high performance convolutional neural networks for image classification
    • D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber. Flexible, high performance convolutional neural networks for image classification. In IJCAI, 2011.
    • (2011) IJCAI
    • Ciresan, D.C.1    Meier, U.2    Masci, J.3    Gambardella, L.M.4    Schmidhuber, J.5
  • 15
    • 84898822561 scopus 로고    scopus 로고
    • Pixeltrack: A fast adaptive algorithm for tracking non-rigid objects
    • S. Duffner and C. Garcia. Pixeltrack: a fast adaptive algorithm for tracking non-rigid objects. In Proc. ICCV, 2013.
    • (2013) Proc. ICCV
    • Duffner, S.1    Garcia, C.2
  • 18
    • 84887375411 scopus 로고    scopus 로고
    • Articulated pose estimation using discriminative armlet classifiers
    • G. Gkioxari, P. Arbeláez, L. Bourdev, and J. Malik. Articulated pose estimation using discriminative armlet classifiers. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Gkioxari, G.1    Arbeláez, P.2    Bourdev, L.3    Malik, J.4
  • 19
    • 84887343558 scopus 로고    scopus 로고
    • Learning and calibrating per-location classifiers for visual place recognition
    • P. Gronat, G. Obozinski, J. Sivic, and T. Pajdla. Learning and calibrating per-location classifiers for visual place recognition. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Gronat, P.1    Obozinski, G.2    Sivic, J.3    Pajdla, T.4
  • 20
    • 84919897442 scopus 로고    scopus 로고
    • Efficient non-iterative domain adaptation of pedestrian detectors to video scenes
    • K. K. Htike and D. C. Hogg. Efficient non-iterative domain adaptation of pedestrian detectors to video scenes. In Proc. ICPR, 2014.
    • (2014) Proc. ICPR
    • Htike, K.K.1    Hogg, D.C.2
  • 21
    • 84977621671 scopus 로고    scopus 로고
    • Modeep: A deep learning framework using motion features for human pose estimation
    • A. Jain, J. Tompson, Y. LeCun, and C. Bregler. Modeep: A deep learning framework using motion features for human pose estimation. In Proc. ACCV, 2014.
    • (2014) Proc. ACCV
    • Jain, A.1    Tompson, J.2    LeCun, Y.3    Bregler, C.4
  • 24
    • 84898472539 scopus 로고    scopus 로고
    • Clustered pose and nonlinear appearance models for human pose estimation
    • S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human pose estimation. In Proc. BMVC, 2010.
    • (2010) Proc. BMVC
    • Johnson, S.1    Everingham, M.2
  • 25
    • 77956005443 scopus 로고    scopus 로고
    • Pn learning: Bootstrapping binary classifiers by structural constraints
    • Z. Kalal, J. Matas, and K. Mikolajczyk. Pn learning: Bootstrapping binary classifiers by structural constraints. In Proc. CVPR, 2010.
    • (2010) Proc. CVPR
    • Kalal, Z.1    Matas, J.2    Mikolajczyk, K.3
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In Proc. NIPS, 2012.
    • (2012) Proc. NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 28
    • 77953209846 scopus 로고    scopus 로고
    • Efficient discriminative learning of parts-based models
    • M. P. Kumar, P. H. S. Torr, and A. Zisserman. Efficient discriminative learning of parts-based models. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Kumar, M.P.1    Torr, P.H.S.2    Zisserman, A.3
  • 29
    • 84887355234 scopus 로고    scopus 로고
    • Human pose estimation using a joint pixel-wise and part-wise formulation
    • L. Ladicky, P. Torr, and A. Zisserman. Human pose estimation using a joint pixel-wise and part-wise formulation. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Ladicky, L.1    Torr, P.2    Zisserman, A.3
  • 30
    • 84887346213 scopus 로고    scopus 로고
    • Sift flow: Dense correspondence across scenes and its applications
    • C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspondence across scenes and its applications. IEEE PAMI, 2011.
    • (2011) IEEE PAMI
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 31
    • 84951944568 scopus 로고    scopus 로고
    • Articulated pose estimation with tiny synthetic videos
    • D. Park and D. Ramanan. Articulated pose estimation with tiny synthetic videos. In CVPR Workshop, 2015.
    • (2015) CVPR Workshop
    • Park, D.1    Ramanan, D.2
  • 32
    • 84973882951 scopus 로고    scopus 로고
    • Flowing convnets for human pose estimation in videos
    • T. Pfister, J. Charles, and A. Zisserman. Flowing convnets for human pose estimation in videos. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Pfister, T.1    Charles, J.2    Zisserman, A.3
  • 33
    • 84989343117 scopus 로고    scopus 로고
    • Deep convolutional neural networks for efficient pose estimation in gesture videos
    • T. Pfister, K. Simonyan, J. Charles, and A. Zisserman. Deep convolutional neural networks for efficient pose estimation in gesture videos. In Proc. ACCV, 2014.
    • (2014) Proc. ACCV
    • Pfister, T.1    Simonyan, K.2    Charles, J.3    Zisserman, A.4
  • 35
    • 84898795911 scopus 로고    scopus 로고
    • Strong appearance and expressive spatial models for human pose estimation
    • L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele. Strong appearance and expressive spatial models for human pose estimation. In Proc. ICCV, 2013.
    • (2013) Proc. ICCV
    • Pishchulin, L.1    Andriluka, M.2    Gehler, P.3    Schiele, B.4
  • 36
    • 24644504137 scopus 로고    scopus 로고
    • Strike a pose: Tracking people by finding stylized poses
    • D. Ramanan, D. Forsyth, and A. Zisserman. Strike a pose: Tracking people by finding stylized poses. In Proc. CVPR, 2005.
    • (2005) Proc. CVPR
    • Ramanan, D.1    Forsyth, D.2    Zisserman, A.3
  • 37
    • 84866710901 scopus 로고    scopus 로고
    • A database for fine grained activity detection of cooking activities
    • M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A database for fine grained activity detection of cooking activities. In Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Rohrbach, M.1    Amin, S.2    Andriluka, M.3    Schiele, B.4
  • 38
    • 84884247128 scopus 로고    scopus 로고
    • Dynamic affine-invariant shape-appearance handshape features and classification in sign language videos
    • A. Roussos, S. Theodorakis, V. Pitsikalis, and P. Maragos. Dynamic affine-invariant shape-appearance handshape features and classification in sign language videos. JMLR, 2013.
    • (2013) JMLR
    • Roussos, A.1    Theodorakis, S.2    Pitsikalis, V.3    Maragos, P.4
  • 39
    • 84887370243 scopus 로고    scopus 로고
    • Modec: Multimodal decomposable models for human pose estimation
    • B. Sapp and B. Taskar. Modec: Multimodal decomposable models for human pose estimation. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Sapp, B.1    Taskar, B.2
  • 40
    • 84908684190 scopus 로고    scopus 로고
    • Multimodal decomposable models for human pose estimation
    • B. Sapp and B. Taskar. Multimodal decomposable models for human pose estimation. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Sapp, B.1    Taskar, B.2
  • 42
    • 0041374147 scopus 로고    scopus 로고
    • Recognizing and tracking human action
    • J. Sullivan and S. Carlsson. Recognizing and tracking human action. In Proc. ECCV, 2002.
    • (2002) Proc. ECCV
    • Sullivan, J.1    Carlsson, S.2
  • 43
    • 84887368146 scopus 로고    scopus 로고
    • Self-paced learning for long-term tracking
    • J. S. Supancic and D. Ramanan. Self-paced learning for long-term tracking. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Supancic, J.S.1    Ramanan, D.2
  • 44
    • 84930634156 scopus 로고    scopus 로고
    • Join training of a convolutional network and a graphical model for human pose estimation
    • J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Join training of a convolutional network and a graphical model for human pose estimation. In Proc. NIPS, 2014.
    • (2014) Proc. NIPS
    • Tompson, J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 45
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Toshev, A.1    Szegedy, C.2
  • 46
    • 77951190698 scopus 로고    scopus 로고
    • Multiple tree models for occlusion and spatial constraints in human pose estimation
    • Y. Wang and G. Mori. Multiple tree models for occlusion and spatial constraints in human pose estimation. In Proc. ECCV, 2008.
    • (2008) Proc. ECCV
    • Wang, Y.1    Mori, G.2
  • 48
    • 80052895150 scopus 로고    scopus 로고
    • Articulated pose estimation with flexible mixtures-of-parts
    • Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Yang, Y.1    Ramanan, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.