메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 4177-4187

Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment

Author keywords

[No Author keywords available]

Indexed keywords

ALIGNMENT; COMPUTER VISION; CONVOLUTION; DYNAMICAL SYSTEMS; IMAGE RECOGNITION; NETWORK ARCHITECTURE; NONLINEAR DYNAMICAL SYSTEMS; PATTERN RECOGNITION; RECURRENT NEURAL NETWORKS; REGRESSION ANALYSIS;

EID: 84986309468     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.453     Document Type: Conference Paper
Times cited : (400)

References (66)
  • 8
    • 85028639150 scopus 로고    scopus 로고
    • In the proceedings of siggraph
    • ACM Press/Addison-Wesley Publishing Co.
    • V. Blanz and T. Vetter. In the proceedings of siggraph. In Computer Graphics and Interactive Techniques, pages 187-194. ACM Press/Addison-Wesley Publishing Co., 1999.
    • (1999) Computer Graphics and Interactive Techniques , pp. 187-194
    • Blanz, V.1    Vetter, T.2
  • 15
    • 0041400989 scopus 로고    scopus 로고
    • Comparing variations on the active appearance model algorithm
    • Citeseer
    • T. F. Cootes and P. Kittipanya-ngam. Comparing variations on the active appearance model algorithm. In British Machine Vision Conference, pages 1-10. Citeseer, 2002.
    • (2002) British Machine Vision Conference , pp. 1-10
    • Cootes, T.F.1    Kittipanya-Ngam, P.2
  • 16
    • 45549088404 scopus 로고    scopus 로고
    • Automatic feature localisation with constrained local models
    • D. Cristinacce and T. Cootes. Automatic feature localisation with constrained local models. Pattern Recognition, 41(10):3054-3067, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.10 , pp. 3054-3067
    • Cristinacce, D.1    Cootes, T.2
  • 18
    • 33745821718 scopus 로고    scopus 로고
    • Human detection using oriented histograms of flow and appearance
    • Springer
    • N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and appearance. In European Conference on Computer Vision, pages 428-441. Springer, 2006.
    • (2006) European Conference on Computer Vision , pp. 428-441
    • Dalal, N.1    Triggs, B.2    Schmid, C.3
  • 22
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • K.-i. Funahashi and Y. Nakamura. Approximation of dynamical systems by continuous time recurrent neural networks. Neural networks, 6(6):801-806, 1993.
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 801-806
    • Funahashi, K.-I.1    Nakamura, Y.2
  • 27
  • 32
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 33
    • 0019647180 scopus 로고
    • An iterative image registration technique with an application to stereo vision
    • B. D. Lucas, T. Kanade, et al. An iterative image registration technique with an application to stereo vision. In International Joint Conference on Artificial Intelligence, volume 81, pages 674-679, 1981.
    • (1981) International Joint Conference on Artificial Intelligence , vol.81 , pp. 674-679
    • Lucas, B.D.1    Kanade, T.2
  • 42
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85-117, 2015.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 46
    • 84894901673 scopus 로고    scopus 로고
    • A quantitative analysis of current practices in optical flow estimation and the principles behind them
    • D. Sun, S. Roth, and M. J. Black. A quantitative analysis of current practices in optical flow estimation and the principles behind them. International Journal of Computer Vision, 106(2):115-137, 2014.
    • (2014) International Journal of Computer Vision , vol.106 , Issue.2 , pp. 115-137
    • Sun, D.1    Roth, S.2    Black, M.J.3
  • 54
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • P. J. Werbos. Backpropagation Through Time: what it does and how to do it. Proceedings of the IEEE, 78(10):1550-1560, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 55
    • 84887383616 scopus 로고    scopus 로고
    • Facial feature tracking under varying facial expressions and face poses based on restricted boltzmann machines
    • IEEE
    • Y. Wu, Z. Wang, and Q. Ji. Facial Feature Tracking Under Varying Facial Expressions and Face Poses Based on Restricted Boltzmann Machines. In International Conference on Computer Vision and Pattern Recognition (CVPR), pages 3452-3459. IEEE, 2013.
    • (2013) International Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 3452-3459
    • Wu, Y.1    Wang, Z.2    Ji, Q.3
  • 61
    • 84906502960 scopus 로고    scopus 로고
    • Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment
    • Springer
    • J. Zhang, S. Shan, M. Kan, and X. Chen. Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment. In European Conference on Computer Vision, pages 1-16. Springer, 2014.
    • (2014) European Conference on Computer Vision , pp. 1-16
    • Zhang, J.1    Shan, S.2    Kan, M.3    Chen, X.4
  • 66
    • 84898429995 scopus 로고    scopus 로고
    • Revisiting horn and schunck: Interpretation as gauss-Newton optimisation
    • D. Zikic, A. Kamen, and N. Navab. Revisiting Horn and Schunck: Interpretation as Gauss-Newton Optimisation. In British Machine Vision Conference, pages 1-12, 2010.
    • (2010) British Machine Vision Conference , pp. 1-12
    • Zikic, D.1    Kamen, A.2    Navab, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.