메뉴 건너뛰기




Volumn , Issue , 2017, Pages 1-476

Generalized additive models: An introduction with R, second edition

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85053092615     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/9781315370279     Document Type: Book
Times cited : (5675)

References (177)
  • 1
    • 0036645099 scopus 로고    scopus 로고
    • Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
    • Adam, B.-L., Y. Qu, J. W. Davis, M. D. Ward, M. A. Clements, L. H. Cazares, O. J. Semmes, P. F. Schellhammer, Y. Yasui, Z. Feng, et al. (2002). Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Research 62(13), 3609-3614.
    • (2002) Cancer Research , vol.62 , Issue.13 , pp. 3609-3614
    • Adam, B.-L.1    Qu, Y.2    Davis, J.W.3    Ward, M.D.4    Clements, M.A.5    Cazares, L.H.6    Semmes, O.J.7    Schellhammer, P.F.8    Yasui, Y.9    Feng, Z.10
  • 2
    • 0001066856 scopus 로고
    • Asymptotic integrated mean square error using least squares and bias minimizing splines
    • Agarwal, G. G. and W. Studden (1980). Asymptotic integrated mean square error using least squares and bias minimizing splines. The Annals of Statistics 8(6), 1307-1325.
    • (1980) The Annals of Statistics , vol.8 , Issue.6 , pp. 1307-1325
    • Agarwal, G.G.1    Studden, W.2
  • 4
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B. Petran and F. Csaaki (Eds.), Budapest: Akadeemiai Kiadi
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. Petran and F. Csaaki (Eds.), International symposium on information theory, Budapest: Akadeemiai Kiadi, pp. 267-281.
    • (1973) International symposium on information theory , pp. 267-281
    • Akaike, H.1
  • 5
    • 0030536645 scopus 로고    scopus 로고
    • Estimating the survival function in the proportional hazards regression model: A study of the small sample size properties
    • Andersen, P. K., M. W. Bentzon, and J. P. Klein (1996). Estimating the survival function in the proportional hazards regression model: a study of the small sample size properties. Scandinavian Journal of Statistics 23(1), 1-12.
    • (1996) Scandinavian Journal of Statistics , vol.23 , Issue.1 , pp. 1-12
    • Andersen, P.K.1    Bentzon, M.W.2    Klein, J.P.3
  • 6
    • 0002431823 scopus 로고
    • A time series approach to numerical differentiation
    • Anderssen, R. and P. Bloomfield (1974). A time series approach to numerical differentiation. Technometrics 16(1), 69-75.
    • (1974) Technometrics , vol.16 , Issue.1 , pp. 69-75
    • Anderssen, R.1    Bloomfield, P.2
  • 8
    • 27244461880 scopus 로고
    • Human sperm competition: Ejaculate adjustment by males and the function of masturbation
    • Baker, R. R. and M. A. Bellis (1993). Human sperm competition: ejaculate adjustment by males and the function of masturbation. Animal Behaviour 46, 861-885.
    • (1993) Animal Behaviour , vol.46 , pp. 861-885
    • Baker, R.R.1    Bellis, M.A.2
  • 11
    • 49749090429 scopus 로고    scopus 로고
    • Simultaneous selection of variables and smoothing parameters in structured additive regression models
    • Belitz, C. and S. Lang (2008). Simultaneous selection of variables and smoothing parameters in structured additive regression models. Computational Statistics & Data Analysis 53(1), 61-81.
    • (2008) Computational Statistics & Data Analysis , vol.53 , Issue.1 , pp. 61-81
    • Belitz, C.1    Lang, S.2
  • 16
    • 57849126672 scopus 로고    scopus 로고
    • A preliminary investigation into the potential role of waist hip ratio (WHR) preference within the assortative mating hypothesis of autistic spectrum disorders
    • Brosnan, M. and I. Walker (2009). A preliminary investigation into the potential role of waist hip ratio (WHR) preference within the assortative mating hypothesis of autistic spectrum disorders. Journal of Autism and Developmental Disorders 39(1), 164-171.
    • (2009) Journal of Autism and Developmental Disorders , vol.39 , Issue.1 , pp. 164-171
    • Brosnan, M.1    Walker, I.2
  • 17
    • 85053551548 scopus 로고
    • Linear Models
    • J. M. Chambers and T. J. Hastie (Eds.), Chapman & Hall
    • Chambers, J. M. (1993). Linear Models. In J. M. Chambers and T. J. Hastie (Eds.), Statistical Models in S, pp. 95-144. Chapman & Hall.
    • (1993) Statistical Models in S , pp. 95-144
    • Chambers, J.M.1
  • 20
    • 69249171674 scopus 로고    scopus 로고
    • Asymptotic properties of penalized spline estimators
    • Claeskens, G., T. Krivobokova, and J. D. Opsomer (2009). Asymptotic properties of penalized spline estimators. Biometrika 96(3), 529-544.
    • (2009) Biometrika , vol.96 , Issue.3 , pp. 529-544
    • Claeskens, G.1    Krivobokova, T.2    Opsomer, J.D.3
  • 24
    • 0000128671 scopus 로고
    • Asymptotics for m-type smoothing splines
    • Cox, D. D. (1983). Asymptotics for m-type smoothing splines. The Annals of Statistics 11(2), 530-551.
    • (1983) The Annals of Statistics , vol.11 , Issue.2 , pp. 530-551
    • Cox, D.D.1
  • 27
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • Craven, P. and G. Wahba (1979). Smoothing noisy data with spline functions. Numerische Mathematik 31, 377-403.
    • (1979) Numerische Mathematik , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 28
    • 0001008882 scopus 로고
    • Algorithm as 155: The distribution of a linear combination of χ2 random variables
    • Davies, R. B. (1980). Algorithm as 155: The distribution of a linear combination of χ2 random variables. J. R. Statist. Soc. C 29, 323-333.
    • (1980) J. R. Statist. Soc. C , vol.29 , pp. 323-333
    • Davies, R.B.1
  • 30
    • 0348186338 scopus 로고    scopus 로고
    • Cambridge: Cambridge University Press
    • Davison, A. C. (2003). Statistical Models. Cambridge: Cambridge University Press.
    • (2003) Statistical Models
    • Davison, A.C.1
  • 33
    • 0042560714 scopus 로고
    • An efficient method for calculating smooth ing splines using orthogonal transformations
    • De Hoog, F. and M. Hutchinson (1987). An efficient method for calculating smooth ing splines using orthogonal transformations. NumerischeMathematik 50(3), 311-319.
    • (1987) NumerischeMathematik , vol.50 , Issue.3 , pp. 311-319
    • De Hoog, F.1    Hutchinson, M.2
  • 35
    • 0007180814 scopus 로고
    • Oscillation matrices with spline smoothing
    • Demmler, A. and C. Reinsch (1975). Oscillation matrices with spline smoothing. Numerische Mathematik 24(5), 375-382.
    • (1975) Numerische Mathematik , vol.24 , Issue.5 , pp. 375-382
    • Demmler, A.1    Reinsch, C.2
  • 39
    • 0001935440 scopus 로고
    • W. Schemp and K. Zeller (Eds.), Construction Theory of Functions of Several Variables, Berlin, Springer
    • Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in Solobev spaces. In W. Schemp and K. Zeller (Eds.), Construction Theory of Functions of Several Variables, Berlin, pp. 85-100. Springer.
    • (1977) Splines minimizing rotation-invariant semi-norms in Solobev spaces , pp. 85-100
    • Duchon, J.1
  • 40
    • 26644471757 scopus 로고    scopus 로고
    • Series evaluation of Tweedie exponential dispersion model densities
    • Dunn, P. K. and G. K. Smyth (2005). Series evaluation of Tweedie exponential dispersion model densities. Statistics and Computing 15(4), 267-280.
    • (2005) Statistics and Computing , vol.15 , Issue.4 , pp. 267-280
    • Dunn, P.K.1    Smyth, G.K.2
  • 41
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • Eilers, P. H. C. and B. D. Marx (1996). Flexible smoothing with B-splines and penalties. Statistical Science 11(2), 89-121.
    • (1996) Statistical Science , vol.11 , Issue.2 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 42
    • 0037613485 scopus 로고    scopus 로고
    • Multivariate calibration with temperature interaction using two-dimensional penalized signal regression
    • Eilers, P. H. C. and B. D. Marx (2003). Multivariate calibration with temperature interaction using two-dimensional penalized signal regression. Chemometrics and Intelligent Laboratory Systems 66, 159-174.
    • (2003) Chemometrics and Intelligent Laboratory Systems , vol.66 , pp. 159-174
    • Eilers, P.H.C.1    Marx, B.D.2
  • 43
    • 0001671519 scopus 로고    scopus 로고
    • Inferring mechanism from time-series data: Delay differential equations
    • Ellner, S. P., B. E. Kendall, S. N. Wood, E. McCauley, and C. J. Briggs (1997). Inferring mechanism from time-series data: delay differential equations. Physica D 110(3-4), 182-194.
    • (1997) Physica D , vol.110 , Issue.3-4 , pp. 182-194
    • Ellner, S.P.1    Kendall, B.E.2    Wood, S.N.3    McCauley, E.4    Briggs, C.J.5
  • 44
    • 8644257675 scopus 로고    scopus 로고
    • Penalized structured additive regression for space-time data: A Bayesian perspective
    • Fahrmeir, L., T. Kneib, and S. Lang (2004). Penalized structured additive regression for space-time data: A Bayesian perspective. Statistica Sinica 14(3), 731-761.
    • (2004) Statistica Sinica , vol.14 , Issue.3 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 46
    • 0035649015 scopus 로고    scopus 로고
    • Bayesian inference for generalized additive mixed models based on markov random field priors
    • Fahrmeir, L. and S. Lang (2001). Bayesian inference for generalized additive mixed models based on markov random field priors. Applied Statistics 50, 201-220.
    • (2001) Applied Statistics , vol.50 , pp. 201-220
    • Fahrmeir, L.1    Lang, S.2
  • 48
    • 0022661929 scopus 로고
    • Robust estimation of variance components
    • Fellner, W. H. (1986). Robust estimation of variance components. Technometrics 28(1), 51-60.
    • (1986) Technometrics , vol.28 , Issue.1 , pp. 51-60
    • Fellner, W.H.1
  • 49
    • 84857532411 scopus 로고    scopus 로고
    • Estimating overdispersion when fitting a generalized linear model to sparse data
    • Fletcher, D. (2012). Estimating overdispersion when fitting a generalized linear model to sparse data. Biometrika 99(1), 230-237.
    • (2012) Biometrika , vol.99 , Issue.1 , pp. 230-237
    • Fletcher, D.1
  • 52
    • 32044449925 scopus 로고
    • Generalized cross validation as a method for choosing a good ridge parameter
    • Golub, G. H., M. Heath, and G. Wahba (1979). Generalized cross validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215-223.
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 56
    • 78651278795 scopus 로고    scopus 로고
    • On the behaviour of marginal and conditional AIC in linear mixed models
    • Greven, S. and T. Kneib (2010). On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika 97(4), 773-789.
    • (2010) Biometrika , vol.97 , Issue.4 , pp. 773-789
    • Greven, S.1    Kneib, T.2
  • 59
    • 0036975172 scopus 로고    scopus 로고
    • Penalized likelihood regression: General approximation and efficient approximation
    • Gu, C. and Y. J. Kim (2002). Penalized likelihood regression: general approximation and efficient approximation. Canadian Journal of Statistics 34(4), 619-628.
    • (2002) Canadian Journal of Statistics , vol.34 , Issue.4 , pp. 619-628
    • Gu, C.1    Kim, Y.J.2
  • 60
    • 0001003992 scopus 로고
    • Minimizing GCV/GML scores with multiple smoothing parameters via the Newton method
    • Gu, C. and G. Wahba (1991). Minimizing GCV/GML scores with multiple smoothing parameters via the Newton method. SIAM Journal on Scientific and Statistical Computing 12(2), 383-398.
    • (1991) SIAM Journal on Scientific and Statistical Computing , vol.12 , Issue.2 , pp. 383-398
    • Gu, C.1    Wahba, G.2
  • 61
    • 0035622815 scopus 로고    scopus 로고
    • Cross-validating non-gaussian data: Generalized approximate cross-validation revisited
    • Gu, C. and D. Xiang (2001). Cross-validating non-gaussian data: Generalized approximate cross-validation revisited. Journal of Computational and Graphical Statistics 10(3), 581-591.
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , Issue.3 , pp. 581-591
    • Gu, C.1    Xiang, D.2
  • 62
    • 15844409557 scopus 로고    scopus 로고
    • Theory for penalised spline regression
    • Hall, P. and J. D. Opsomer (2005). Theory for penalised spline regression. Biometrika 92(1), 105-118.
    • (2005) Biometrika , vol.92 , Issue.1 , pp. 105-118
    • Hall, P.1    Opsomer, J.D.2
  • 65
    • 84909719647 scopus 로고
    • How far are automatically chosen regression smoothing parameters from their optimum?
    • Härdle, W., P. Hall, and J. S. Marron (1988). How far are automatically chosen regression smoothing parameters from their optimum? Journal of the American Statistical Association 83(401), 86-95.
    • (1988) Journal of the American Statistical Association , vol.83 , Issue.401 , pp. 86-95
    • Härdle, W.1    Hall, P.2    Marron, J.S.3
  • 66
    • 84972488102 scopus 로고
    • Generalized additive models (with discussion)
    • Hastie, T. and R. Tibshirani (1986). Generalized additive models (with discussion). Statistical Science 1, 297-318.
    • (1986) Statistical Science , vol.1 , pp. 297-318
    • Hastie, T.1    Tibshirani, R.2
  • 69
    • 85053099089 scopus 로고    scopus 로고
    • The Elements of Statistical Learning springer
    • Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning springer.
    • (2009)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 70
    • 0002585592 scopus 로고
    • Generalized additive models
    • J. Chambers and T. Hastie (Eds.), London: Chapman & Hall
    • Hastie, T. J. (1993). Generalized additive models. In J. Chambers and T. Hastie (Eds.), Statistical Models in S. London: Chapman & Hall.
    • (1993) Statistical Models in S
    • Hastie, T.J.1
  • 72
    • 0000510755 scopus 로고
    • The Bristol channel sole (solea solea (l.)): A fisheries case study
    • Horwood, J. (1993). The Bristol channel sole (solea solea (l.)): A fisheries case study. Advances in Marine Biology 29, 215-367.
    • (1993) Advances in Marine Biology , vol.29 , pp. 215-367
    • Horwood, J.1
  • 75
    • 80052029170 scopus 로고
    • Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models)
    • Kass, R. E. and D. Steffey (1989). Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). Journal of the American Statistical Association 84(407), 717-726.
    • (1989) Journal of the American Statistical Association , vol.84 , Issue.407 , pp. 717-726
    • Kass, R.E.1    Steffey, D.2
  • 77
    • 2442486641 scopus 로고    scopus 로고
    • Smoothing spline Gaussian regression: More scalable computation via efficient approximation
    • Kim, Y. J. and C. Gu (2004). Smoothing spline Gaussian regression: more scalable computation via efficient approximation. Journal of the Royal Statistical Society, Series B 66, 337-356.
    • (2004) Journal of the Royal Statistical Society, Series B , vol.66 , pp. 337-356
    • Kim, Y.J.1    Gu, C.2
  • 78
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
    • Kimeldorf, G. S. and G. Wahba (1970). A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. The Annals of Mathematical Statistics 41(2), 495-502.
    • (1970) The Annals of Mathematical Statistics , vol.41 , Issue.2 , pp. 495-502
    • Kimeldorf, G.S.1    Wahba, G.2
  • 80
    • 84938510555 scopus 로고    scopus 로고
    • Bayesian structured additive distributional regression with an application to regional income inequality in Germany
    • Klein, N., T. Kneib, S. Lang, and A. Sohn (2015). Bayesian structured additive distributional regression with an application to regional income inequality in Germany. Annals of Applied Statistics 9, 1024-1052.
    • (2015) Annals of Applied Statistics , vol.9 , pp. 1024-1052
    • Klein, N.1    Kneib, T.2    Lang, S.3    Sohn, A.4
  • 81
    • 33645075433 scopus 로고    scopus 로고
    • Structured additive regression for categorical space-time data: A mixed model approach
    • Kneib, T. and L. Fahrmeir (2006). Structured additive regression for categorical space-time data: A mixed model approach. Biometrics 62(1), 109-118.
    • (2006) Biometrics , vol.62 , Issue.1 , pp. 109-118
    • Kneib, T.1    Fahrmeir, L.2
  • 82
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and J. H. Ware (1982). Random-effects models for longitudinal data. Biometrics 38, 963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 84
    • 1342282543 scopus 로고    scopus 로고
    • Tests for a difference in timing of physiological response between two brain regions measured by using functional magnetic resonance imaging
    • Landau, S., I. C. Ellison-Wright, and E. T. Bullmore (2003). Tests for a difference in timing of physiological response between two brain regions measured by using functional magnetic resonance imaging. Applied Statistics 53(1), 63-82.
    • (2003) Applied Statistics , vol.53 , Issue.1 , pp. 63-82
    • Landau, S.1    Ellison-Wright, I.C.2    Bullmore, E.T.3
  • 87
    • 78651387624 scopus 로고    scopus 로고
    • P-spline anova-type interaction models for spatiotemporal smoothing
    • Lee, D.-J. and M. Durbán (2011). P-spline anova-type interaction models for spatiotemporal smoothing. Statistical Modelling 11(1), 49-69.
    • (2011) Statistical Modelling , vol.11 , Issue.1 , pp. 49-69
    • Lee, D.-J.1    Durbán, M.2
  • 88
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in multivariate nonparametric regression
    • Lin, Y., H. H. Zhang, et al. (2006). Component selection and smoothing in multivariate nonparametric regression. The Annals of Statistics 34(5), 2272-2297.
    • (2006) The Annals of Statistics , vol.34 , Issue.5 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.H.2
  • 89
    • 79961050814 scopus 로고    scopus 로고
    • An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach
    • Lindgren, F., H. Rue, and J. Lindström (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73(4), 423-498.
    • (2011) Journal of the Royal Statistical Society: Series B (Statistical Methodology) , vol.73 , Issue.4 , pp. 423-498
    • Lindgren, F.1    Rue, H.2    Lindström, J.3
  • 90
    • 58549103276 scopus 로고    scopus 로고
    • A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables
    • Liu, H., Y. Tang, and H. H. Zhang (2009). A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Computational Statistics & Data Analysis 53(4), 853-856.
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.4 , pp. 853-856
    • Liu, H.1    Tang, Y.2    Zhang, H.H.3
  • 91
    • 0007983125 scopus 로고    scopus 로고
    • IPO market cycles: Bubbles or sequential learning?
    • Lowry, M. and G. W. Schwert (2002). IPO market cycles: Bubbles or sequential learning? The Journal of Finance 67(3), 1171-1198.
    • (2002) The Journal of Finance , vol.67 , Issue.3 , pp. 1171-1198
    • Lowry, M.1    Schwert, G.W.2
  • 94
    • 84915425007 scopus 로고
    • Some comments on cp
    • Mallows, C. L. (1973). Some comments on cp. Technometrics 15, 661-675.
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 95
    • 79953654016 scopus 로고    scopus 로고
    • Practical variable selection for generalized additive models
    • Marra, G. and S. N. Wood (2011). Practical variable selection for generalized additive models. Computational Statistics & Data Analysis 55(7), 2372-2387.
    • (2011) Computational Statistics & Data Analysis , vol.55 , Issue.7 , pp. 2372-2387
    • Marra, G.1    Wood, S.N.2
  • 96
    • 84857058351 scopus 로고    scopus 로고
    • Coverage properties of confidence intervals for generalized additive model components
    • Marra, G. and S. N. Wood (2012). Coverage properties of confidence intervals for generalized additive model components. Scandinavian Journal of Statistics 39(1), 53-74.
    • (2012) Scandinavian Journal of Statistics , vol.39 , Issue.1 , pp. 53-74
    • Marra, G.1    Wood, S.N.2
  • 97
    • 13444257535 scopus 로고    scopus 로고
    • Multidimensional penalized signal regression
    • Marx, B. D. and P. H. Eilers (2005). Multidimensional penalized signal regression. Technometrics 47(1), 13-22.
    • (2005) Technometrics , vol.47 , Issue.1 , pp. 13-22
    • Marx, B.D.1    Eilers, P.H.2
  • 99
    • 84911987601 scopus 로고    scopus 로고
    • Finite area smoothingwith generalized distance splines
    • Miller, D. L. and S. N.Wood (2014). Finite area smoothingwith generalized distance splines. Environmental and Ecological Statistics 21(4), 715-731.
    • (2014) Environmental and Ecological Statistics , vol.21 , Issue.4 , pp. 715-731
    • Miller, D.L.1    Wood, S.N.2
  • 101
    • 84970543436 scopus 로고
    • Compensatory reactions of populations to stresses and their evolutionary significance
    • Nicholson, A. J. (1954a). Compensatory reactions of populations to stresses and their evolutionary significance. Australian Journal of Zoology 2, 1-8.
    • (1954) Australian Journal of Zoology , vol.2 , pp. 1-8
    • Nicholson, A.J.1
  • 102
    • 84970556051 scopus 로고
    • An outline of the dynamics of animal populations
    • Nicholson, A. J. (1954b). An outline of the dynamics of animal populations. Australian Journal of Zoology 2, 9-65.
    • (1954) Australian Journal of Zoology , vol.2 , pp. 9-65
    • Nicholson, A.J.1
  • 103
    • 33845606053 scopus 로고
    • Bayesian confidence intervals for smoothing splines
    • Nychka, D. (1988). Bayesian confidence intervals for smoothing splines. Journal of the American Statistical Association 83(404), 1134-1143.
    • (1988) Journal of the American Statistical Association , vol.83 , Issue.404 , pp. 1134-1143
    • Nychka, D.1
  • 105
    • 77956889208 scopus 로고
    • Recovery of interblock information when block sizes are unequal
    • Patterson, H. D. and R. Thompson (1971). Recovery of interblock information when block sizes are unequal. Biometrika 58, 545-554.
    • (1971) Biometrika , vol.58 , pp. 545-554
    • Patterson, H.D.1    Thompson, R.2
  • 106
    • 14844318222 scopus 로고    scopus 로고
    • The NMMAPSdata package
    • Peng, R. D. and L. J. Welty (2004). The NMMAPSdata package. R News 4(2), 10-14.
    • (2004) R News , vol.4 , Issue.2 , pp. 10-14
    • Peng, R.D.1    Welty, L.J.2
  • 107
    • 0000336141 scopus 로고
    • Contribution to the discussion of the paper by DR Cox
    • Peto, R. (1972). Contribution to the discussion of the paper by DR Cox. Journal of the Royal Statistical Society, Series B 34(2), 205-207.
    • (1972) Journal of the Royal Statistical Society, Series B , vol.34 , Issue.2 , pp. 205-207
    • Peto, R.1
  • 111
    • 84894277295 scopus 로고    scopus 로고
    • Shape constrained additive models
    • Pya, N. and S. N. Wood (2015). Shape constrained additive models. Statistics and Computing 25(3), 543-559. Quintana-Ortí, G., X. Sun, and C. H. Bischof (1998). A BLAS-3 version of the QR factorization with column pivoting. SIAM Journal on Scientific Computing 19(5), 1486-1494.
    • (2015) Statistics and Computing , vol.25 , Issue.3 , pp. 543-559
    • Pya, N.1    Wood, S.N.2
  • 116
    • 34250516079 scopus 로고
    • Smoothing by spline functions
    • Reinsch, C. H. (1967). Smoothing by spline functions. Numerische Mathematik 10, 177-183.
    • (1967) Numerische Mathematik , vol.10 , pp. 177-183
    • Reinsch, C.H.1
  • 119
    • 0000196746 scopus 로고
    • Convergence rates for partially splined models
    • Rice, J. (1986). Convergence rates for partially splined models. Statistics & Probability Letters 4(4), 203-208.
    • (1986) Statistics & Probability Letters , vol.4 , Issue.4 , pp. 203-208
    • Rice, J.1
  • 121
    • 84906062174 scopus 로고    scopus 로고
    • Automatic smoothing parameter selection in GAMLSS with an application to centile estimation
    • Rigby, R. A. and D. M. Stasinopoulos (2014). Automatic smoothing parameter selection in GAMLSS with an application to centile estimation. Statistical Methods in Medical Research 23(4), 318-332.
    • (2014) Statistical Methods in Medical Research , vol.23 , Issue.4 , pp. 318-332
    • Rigby, R.A.1    Stasinopoulos, D.M.2
  • 122
    • 84938419708 scopus 로고    scopus 로고
    • Fast smoothing parameter separation in multidimensional generalized P-splines: The SAP algorithm
    • Rodríguez-Álvarez, M. X., D.-J. Lee, T. Kneib, M. Durbán, and P. Eilers (2015). Fast smoothing parameter separation in multidimensional generalized P-splines: the SAP algorithm. Statistics and Computing 25(5), 941-957.
    • (2015) Statistics and Computing , vol.25 , Issue.5 , pp. 941-957
    • Rodríguez-Álvarez, M.X.1    Lee, D.-J.2    Kneib, T.3    Durbán, M.4    Eilers, P.5
  • 124
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the royal statistical society: Series B 71(2), 319-392.
    • (2009) Journal of the royal statistical society: Series B , vol.71 , Issue.2 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 126
    • 84897892561 scopus 로고    scopus 로고
    • A unifying approach to the estimation of the conditionalAkaike information in generalized linearmixed models
    • Säfken, B., T. Kneib, C.-S. vanWaveren, and S. Greven (2014). A unifying approach to the estimation of the conditionalAkaike information in generalized linearmixed models. Electronic Journal of Statistics 8, 201-225.
    • (2014) Electronic Journal of Statistics , vol.8 , pp. 201-225
    • Säfken, B.1    Kneib, T.2    vanWaveren, C.-S.3    Greven, S.4
  • 127
    • 77956888303 scopus 로고
    • Estimation in generalized linear models with random effects
    • Schall, R. (1991). Estimation in generalized linear models with random effects. Biometrika 78(4), 719-727.
    • (1991) Biometrika , vol.78 , Issue.4 , pp. 719-727
    • Schall, R.1
  • 128
    • 40249103367 scopus 로고    scopus 로고
    • Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models
    • Scheipl, F., S. Greven, and H. Küchenhoff (2008). Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Computational Statistics & Data Analysis 52(7), 3283-3299.
    • (2008) Computational Statistics & Data Analysis , vol.52 , Issue.7 , pp. 3283-3299
    • Scheipl, F.1    Greven, S.2    Küchenhoff, H.3
  • 129
    • 55549110371 scopus 로고    scopus 로고
    • Boosting additive models using component-wise P-splines
    • Schmid, M. and T. Hothorn (2008). Boosting additive models using component-wise P-splines. Computational Statistics & Data Analysis 53(2), 298-311.
    • (2008) Computational Statistics & Data Analysis , vol.53 , Issue.2 , pp. 298-311
    • Schmid, M.1    Hothorn, T.2
  • 131
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6(2), 461-464.
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 133
    • 0001995852 scopus 로고
    • Some aspects of the spline smoothing approach to non-parametric regression curve fitting
    • Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. Journal of the Royal Statistical Society B 47(1), 1-53.
    • (1985) Journal of the Royal Statistical Society B , vol.47 , Issue.1 , pp. 1-53
    • Silverman, B.W.1
  • 135
    • 0014214101 scopus 로고
    • Diagnostic value of serum-creatinine-kinase in a coronary care unit
    • Smith, A. F. (1967). Diagnostic value of serum-creatinine-kinase in a coronary care unit. Lancet 2, 178.
    • (1967) Lancet , vol.2 , pp. 178
    • Smith, A.F.1
  • 137
    • 0000935894 scopus 로고
    • Spline smoothing and optimal rates of convergence in nonparametric regression models
    • Speckman, P. (1985). Spline smoothing and optimal rates of convergence in nonparametric regression models. The Annals of Statistics 13(3), 970-983.
    • (1985) The Annals of Statistics , vol.13 , Issue.3 , pp. 970-983
    • Speckman, P.1
  • 138
    • 0000439527 scopus 로고
    • Optimal global rates of convergence for nonparametric regression
    • Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. The Annals of Statistics 10(4), 1040-1053.
    • (1982) The Annals of Statistics , vol.10 , Issue.4 , pp. 1040-1053
    • Stone, C.J.1
  • 139
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions (with discussion)
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society, Series B 36, 111-147.
    • (1974) Journal of the Royal Statistical Society, Series B , vol.36 , pp. 111-147
    • Stone, M.1
  • 140
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion
    • Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. Journal of the Royal Statistical Society, Series B 39, 44-47.
    • (1977) Journal of the Royal Statistical Society, Series B , vol.39 , pp. 44-47
    • Stone, M.1
  • 141
    • 84864507889 scopus 로고    scopus 로고
    • S. r package version 2.38
    • Therneau, T. (2015). A package for survival analysis in S. r package version 2.38. URL http://CRAN. R-project. org/package= survival. Box.
    • (2015) A package for survival analysis
    • Therneau, T.1
  • 143
    • 33845509035 scopus 로고    scopus 로고
    • Generalized additive modeling with implicit variable selection by likelihood-based boosting
    • Tutz, G. and H. Binder (2006). Generalized additive modeling with implicit variable selection by likelihood-based boosting. Biometrics 62(4), 961-971.
    • (2006) Biometrics , vol.62 , Issue.4 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 144
    • 0002801707 scopus 로고
    • An index which distinguishes between some important exponential families
    • Indian Statistical Institute Golden Jubilee International Conference
    • Tweedie, M. (1984). An index which distinguishes between some important exponential families. In Statistics: Applications and New Directions: Proc. Indian Statistical Institute Golden Jubilee International Conference, pp. 579-604.
    • (1984) Statistics: Applications and New Directions: Proc , pp. 579-604
    • Tweedie, M.1
  • 147
    • 0005173689 scopus 로고
    • Spline bases, regularization, and generalized cross validation for solving approximation problems with large quantities of noisy data
    • E. Cheney (Ed.), London: Academic Press
    • Wahba, G. (1980). Spline bases, regularization, and generalized cross validation for solving approximation problems with large quantities of noisy data. In E. Cheney (Ed.), Approximation Theory III. London: Academic Press.
    • (1980) Approximation Theory III
    • Wahba, G.1
  • 149
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
    • Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. The Annals of Statistics 13(4), 1378-1402.
    • (1985) The Annals of Statistics , vol.13 , Issue.4 , pp. 1378-1402
    • Wahba, G.1
  • 151
    • 34247262042 scopus 로고    scopus 로고
    • Low-rank smoothing splines on complicated domains
    • Wang, H. and M. G. Ranalli (2007). Low-rank smoothing splines on complicated domains. Biometrics 63(1), 209-217.
    • (2007) Biometrics , vol.63 , Issue.1 , pp. 209-217
    • Wang, H.1    Ranalli, M.G.2
  • 153
    • 0032336499 scopus 로고    scopus 로고
    • Smoothing spline models with correlated random errors
    • Wang, Y. (1998b). Smoothing spline models with correlated random errors. Journal of the American Statistical Association 93(441), 341-348.
    • (1998) Journal of the American Statistical Association , vol.93 , Issue.441 , pp. 341-348
    • Wang, Y.1
  • 156
    • 0000320904 scopus 로고
    • Fitting Cox’s regression model to survival data using GLIM
    • Whitehead, J. (1980). Fitting Cox’s regression model to survival data using GLIM. Applied Statistics 29(3), 268-275.
    • (1980) Applied Statistics , vol.29 , Issue.3 , pp. 268-275
    • Whitehead, J.1
  • 157
    • 0034364945 scopus 로고    scopus 로고
    • Modelling and smoothing parameter estimation with multiple quadratic penalties
    • Wood, S. N. (2000). Modelling and smoothing parameter estimation with multiple quadratic penalties. Journal of the Royal Statistical Society, Series B 62, 413-428.
    • (2000) Journal of the Royal Statistical Society, Series B , vol.62 , pp. 413-428
    • Wood, S.N.1
  • 159
    • 4944226585 scopus 로고    scopus 로고
    • Stable and efficientmultiple smoothing parameter estimation for generalized additive models
    • Wood, S. N. (2004). Stable and efficientmultiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association 99, 673-686.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 673-686
    • Wood, S.N.1
  • 160
    • 33645690420 scopus 로고    scopus 로고
    • Low-rank scale-invariant tensor product smooths for generalized additive mixed models
    • Wood, S. N. (2006a). Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62(4), 1025-1036.
    • (2006) Biometrics , vol.62 , Issue.4 , pp. 1025-1036
    • Wood, S.N.1
  • 161
    • 33845633752 scopus 로고    scopus 로고
    • On confidence intervals for generalized additive models based on penalized regression splines
    • Wood, S. N. (2006b). On confidence intervals for generalized additive models based on penalized regression splines. Australian & New Zealand Journal of Statistics 48(4), 445-464.
    • (2006) Australian & New Zealand Journal of Statistics , vol.48 , Issue.4 , pp. 445-464
    • Wood, S.N.1
  • 163
    • 78650862532 scopus 로고    scopus 로고
    • Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
    • Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73(1), 3-36.
    • (2011) Journal of the Royal Statistical Society: Series B (Statistical Methodology) , vol.73 , Issue.1 , pp. 3-36
    • Wood, S.N.1
  • 164
    • 84874762668 scopus 로고    scopus 로고
    • On p-values for smooth components of an extended generalized additive model
    • Wood, S. N. (2013a). On p-values for smooth components of an extended generalized additive model. Biometrika 100(1), 221-228.
    • (2013) Biometrika , vol.100 , Issue.1 , pp. 221-228
    • Wood, S.N.1
  • 165
    • 84890397927 scopus 로고    scopus 로고
    • A simple test for random effects in regression models
    • Wood, S. N. (2013b). A simple test for random effects in regression models. Biometrika 100(4), 1005-1010.
    • (2013) Biometrika , vol.100 , Issue.4 , pp. 1005-1010
    • Wood, S.N.1
  • 166
    • 84945140086 scopus 로고    scopus 로고
    • Cambridge University Press
    • Wood, S. N. (2015). Core Statistics. Cambridge University Press.
    • (2015) Core Statistics
    • Wood, S.N.1
  • 167
    • 85007362148 scopus 로고    scopus 로고
    • Just another Gibbs additive modeller: Interfacing JAGS and mgcv
    • Wood, S. N. (2016a). Just another Gibbs additive modeller: Interfacing JAGS and mgcv. Journal of Statistical Software 75(7).
    • (2016) Journal of Statistical Software , vol.75 , Issue.7
    • Wood, S.N.1
  • 170
    • 85012994442 scopus 로고    scopus 로고
    • A generalized Fellner-Schallmethod for smoothing parameter optimization with application to Tweedie location, scale and shape models
    • press
    • Wood, S. N. and M. Fasiolo (2017). A generalized Fellner-Schallmethod for smoothing parameter optimization with application to Tweedie location, scale and shape models. Biometrics (in press).
    • (2017) Biometrics
    • Wood, S.N.1    Fasiolo, M.2
  • 173
    • 85010676878 scopus 로고    scopus 로고
    • Smoothing parameter and model selection for general smooth models (with discussion)
    • Wood, S. N., N. Pya, and B. Säfken (2016). Smoothing parameter and model selection for general smooth models (with discussion). Journal of the American Statistical Association 111, 1548-1575.
    • (2016) Journal of the American Statistical Association , vol.111 , pp. 1548-1575
    • Wood, S.N.1    Pya, N.2    Säfken, B.3
  • 174
    • 84875400806 scopus 로고    scopus 로고
    • Straightforward intermediate rank tensor product smoothing in mixed models
    • Wood, S. N., F. Scheipl, and J. J. Faraway (2013). Straightforward intermediate rank tensor product smoothing in mixed models. Statistics and Computing 23(3), 341-360.
    • (2013) Statistics and Computing , vol.23 , Issue.3 , pp. 341-360
    • Wood, S.N.1    Scheipl, F.2    Faraway, J.J.3
  • 175
    • 34547887938 scopus 로고    scopus 로고
    • Vector generalized linear and additive extreme value models
    • Yee, T. W. and A. G. Stephenson (2007). Vector generalized linear and additive extreme value models. Extremes 10(1-2), 1-19.
    • (2007) Extremes , vol.10 , Issue.1-2 , pp. 1-19
    • Yee, T.W.1    Stephenson, A.G.2
  • 177
    • 80455176896 scopus 로고    scopus 로고
    • Conditional Akaike information criterion for generalized linear mixed models
    • Yu, D. and K. K. Yau (2012). Conditional Akaike information criterion for generalized linear mixed models. Computational Statistics & Data Analysis 56(3), 629-644.
    • (2012) Computational Statistics & Data Analysis , vol.56 , Issue.3 , pp. 629-644
    • Yu, D.1    Yau, K.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.