메뉴 건너뛰기




Volumn 24, Issue 2, 2014, Pages 223-238

Multilevel structured additive regression

Author keywords

Bayesian hierarchical models; Gaussian random fields; Markov random fields; MCMC; Multiplicative random effects; P splines

Indexed keywords


EID: 84893913808     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-012-9366-0     Document Type: Article
Times cited : (50)

References (42)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert, J., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88, 669-679 (1993).
    • (1993) J. Am. Stat. Assoc. , vol.88 , pp. 669-679
    • Albert, J.1    Chib, S.2
  • 2
    • 49749090429 scopus 로고    scopus 로고
    • Simultaneous selection of variables and smoothing parameters in structured additive regression models
    • Belitz, C., Lang, S.: Simultaneous selection of variables and smoothing parameters in structured additive regression models. Comput. Stat. Data Anal. 53, 61-81 (2008).
    • (2008) Comput. Stat. Data Anal. , vol.53 , pp. 61-81
    • Belitz, C.1    Lang, S.2
  • 3
    • 26444547624 scopus 로고    scopus 로고
    • Generalized structured additive regression based on Bayesian P-splines
    • Brezger, A., Lang, S.: Generalized structured additive regression based on Bayesian P-splines. Comput. Stat. Data Anal. 50, 967-991 (2006).
    • (2006) Comput. Stat. Data Anal. , vol.50 , pp. 967-991
    • Brezger, A.1    Lang, S.2
  • 4
    • 33845327820 scopus 로고    scopus 로고
    • Locally adaptive semiparametric estimation of the mean and variance functions in regression models
    • Chan, D., Kohn, R., Nott, D., Kirby, C.: Locally adaptive semiparametric estimation of the mean and variance functions in regression models. J. Comput. Graph. Stat. 15, 915-936 (2006).
    • (2006) J. Comput. Graph. Stat. , vol.15 , pp. 915-936
    • Chan, D.1    Kohn, R.2    Nott, D.3    Kirby, C.4
  • 5
    • 49549109589 scopus 로고    scopus 로고
    • Variable selection and model averaging in semiparametric overdispersed generalized linear models
    • Cottet, R., Kohn, R., Nott, D.: Variable selection and model averaging in semiparametric overdispersed generalized linear models. J. Am. Stat. Assoc. 103, 661-671 (2008).
    • (2008) J. Am. Stat. Assoc. , vol.103 , pp. 661-671
    • Cottet, R.1    Kohn, R.2    Nott, D.3
  • 7
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing using B-splines and penalized likelihood
    • Eilers, P. H. C., Marx, B. D.: Flexible smoothing using B-splines and penalized likelihood. Stat. Sci. 11, 89-121 (1996).
    • (1996) Stat. Sci. , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 8
    • 8644257675 scopus 로고    scopus 로고
    • Penalized structured additive regression for space-time data: a Bayesian perspective
    • Fahrmeir, L., Kneib, T., Lang, S.: Penalized structured additive regression for space-time data: a Bayesian perspective. Stat. Sin. 14, 731-761 (2004).
    • (2004) Stat. Sin. , vol.14 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 9
    • 0035649015 scopus 로고    scopus 로고
    • Bayesian inference for generalized additive mixed models based on Markov random field priors
    • Fahrmeir, L., Lang, S.: Bayesian inference for generalized additive mixed models based on Markov random field priors. J. R. Stat. Soc., Ser. C, Appl. Stat. 50, 201-220 (2001).
    • (2001) J. R. Stat. Soc., Ser. C, Appl. Stat. , vol.50 , pp. 201-220
    • Fahrmeir, L.1    Lang, S.2
  • 11
    • 70349816927 scopus 로고    scopus 로고
    • Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data
    • Frühwirth-Schnatter, S., Frühwirth, R., Held, L., Rue, H.: Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data. Stat. Comput. 19, 479-492 (2009).
    • (2009) Stat. Comput. , vol.19 , pp. 479-492
    • Frühwirth-Schnatter, S.1    Frühwirth, R.2    Held, L.3    Rue, H.4
  • 12
    • 85013119491 scopus 로고    scopus 로고
    • Bayesian variable selection for random intercept modelling of Gaussian and non-Gaussian data
    • J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West (Eds.), London: Oxford University Press
    • Frühwirth-Schnatter, S., Wagner, H.: Bayesian variable selection for random intercept modelling of Gaussian and non-Gaussian data. In: Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M., West, M. (eds.) Bayesian Statistics, vol. 9, pp. 165-200. Oxford University Press, London (2011).
    • (2011) Bayesian Statistics , vol.9 , pp. 165-200
    • Frühwirth-Schnatter, S.1    Wagner, H.2
  • 13
    • 0037471367 scopus 로고    scopus 로고
    • Space-varying regression models: Specifications and simulation
    • Gamerman, D., Moreira, A. R. B., Rue, H.: Space-varying regression models: Specifications and simulation. Comput. Stat. Data Anal. 42, 513-533 (2003).
    • (2003) Comput. Stat. Data Anal. , vol.42 , pp. 513-533
    • Gamerman, D.1    Moreira, A.R.B.2    Rue, H.3
  • 14
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelfand, A. E.: Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515-534 (2006).
    • (2006) Bayesian Anal. , vol.1 , pp. 515-534
    • Gelfand, A.E.1
  • 16
    • 84855610432 scopus 로고    scopus 로고
    • Additive mixed models with Dirichlet process mixture and P-spline priors
    • Heinzl, F., Kneib, T., Fahrmeir, L.: Additive mixed models with Dirichlet process mixture and P-spline priors. AStA Adv. Stat. Anal. 96, 47-68 (2012).
    • (2012) AStA Adv. Stat. Anal. , vol.96 , pp. 47-68
    • Heinzl, F.1    Kneib, T.2    Fahrmeir, L.3
  • 18
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and multinomial regression
    • Holmes, C. C., Held, L.: Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Anal. 1, 145-168 (2006).
    • (2006) Bayesian Anal. , vol.1 , pp. 145-168
    • Holmes, C.C.1    Held, L.2
  • 19
    • 33751018838 scopus 로고    scopus 로고
    • Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models
    • Jullion, A., Lambert, P.: Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models. Comput. Stat. Data Anal. 51, 2542-2558 (2007).
    • (2007) Comput. Stat. Data Anal. , vol.51 , pp. 2542-2558
    • Jullion, A.1    Lambert, P.2
  • 21
    • 0030455233 scopus 로고    scopus 로고
    • Nutrition, health, and mortality in Sub Saharan Africa: is there a gender bias?
    • Klasen, S.: Nutrition, health, and mortality in Sub Saharan Africa: is there a gender bias? J. Dev. Stud. 32, 913-933 (1996).
    • (1996) J. Dev. Stud. , vol.32 , pp. 913-933
    • Klasen, S.1
  • 22
    • 78649434657 scopus 로고    scopus 로고
    • Simultaneous confidence bands for penalized spline estimators
    • Krivobokova, T., Kneib, T., Claeskens, G.: Simultaneous confidence bands for penalized spline estimators. J. Am. Stat. Assoc. 105, 852-863 (2010).
    • (2010) J. Am. Stat. Assoc. , vol.105 , pp. 852-863
    • Krivobokova, T.1    Kneib, T.2    Claeskens, G.3
  • 24
    • 84893914210 scopus 로고    scopus 로고
    • Accommodating heterogeneity and functional flexibility in store sales models: a Bayesian semiparametric approach
    • Lang, S., Steiner, W., Wechselberger, P.: Accommodating heterogeneity and functional flexibility in store sales models: a Bayesian semiparametric approach. Revised for Marketing Science (2012).
    • (2012) Revised for Marketing Science
    • Lang, S.1    Steiner, W.2    Wechselberger, P.3
  • 25
    • 39149101409 scopus 로고    scopus 로고
    • Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models
    • Panagiotelis, A., Smith, M.: Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models. J. Econom. 143, 291-316 (2008).
    • (2008) J. Econom. , vol.143 , pp. 291-316
    • Panagiotelis, A.1    Smith, M.2
  • 26
    • 34249101736 scopus 로고    scopus 로고
    • A general framework for the parametrization of hierarchical models
    • Papaspiliopoulos, O., Roberts, G. O., Sköld, M.: A general framework for the parametrization of hierarchical models. Stat. Sci. 22, 59-73 (2007).
    • (2007) Stat. Sci. , vol.22 , pp. 59-73
    • Papaspiliopoulos, O.1    Roberts, G.O.2    Sköld, M.3
  • 30
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue, H., Martino, S., Nicolas, C.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319-392 (2009).
    • (2009) J. R. Stat. Soc. B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Nicolas, C.3
  • 31
    • 0036921633 scopus 로고    scopus 로고
    • Selecting the number of knots for penalized splines
    • Ruppert, D.: Selecting the number of knots for penalized splines. J. Comput. Graph. Stat. 11, 735-757 (2002).
    • (2002) J. Comput. Graph. Stat. , vol.11 , pp. 735-757
    • Ruppert, D.1
  • 33
    • 84871993172 scopus 로고    scopus 로고
    • Function selection in structured additive regression models based on spike-and-slab priors
    • to appear). doi: 10. 1080/01621459. 2012. 737742
    • Scheipl, F., Fahrmeir, L., Kneib, T.: Function selection in structured additive regression models based on spike-and-slab priors. J. Am. Stat. Assoc. (2012, to appear). doi: 10. 1080/01621459. 2012. 737742.
    • (2012) J. Am. Stat. Assoc.
    • Scheipl, F.1    Fahrmeir, L.2    Kneib, T.3
  • 34
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • Smith, M., Kohn, R.: Nonparametric regression using Bayesian variable selection. J. Econom. 75, 317-343 (1996).
    • (1996) J. Econom. , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 35
    • 0031326917 scopus 로고    scopus 로고
    • A Bayesian approach to nonparametric bivariate regression
    • Smith, M., Kohn, R.: A Bayesian approach to nonparametric bivariate regression. J. Am. Stat. Assoc. 92, 1522-1535 (1997).
    • (1997) J. Am. Stat. Assoc. , vol.92 , pp. 1522-1535
    • Smith, M.1    Kohn, R.2
  • 36
    • 0002432770 scopus 로고    scopus 로고
    • Sex differentials in the nutritional status of young children
    • United Nations (Ed.), New York: United Nations
    • Somerfelt, E., Arnold, F.: Sex differentials in the nutritional status of young children. In: United Nations (ed.) Too Young to Die, pp. 133-153. United Nations, New York (1999).
    • (1999) Too Young to Die , pp. 133-153
    • Somerfelt, E.1    Arnold, F.2
  • 38
    • 79953700583 scopus 로고    scopus 로고
    • Is economic growth associated with reduction in child undernutrition in India?
    • Subramanyam, M. A., Kawachi, I., Berkman, L. F., Subramanian, S. V.: Is economic growth associated with reduction in child undernutrition in India? PLoS Med. 8, 1-15 (2011).
    • (2011) PLoS Med. , vol.8 , pp. 1-15
    • Subramanyam, M.A.1    Kawachi, I.2    Berkman, L.F.3    Subramanian, S.V.4
  • 40
    • 0141576514 scopus 로고    scopus 로고
    • Thin-plate regression splines
    • Wood, S. N.: Thin-plate regression splines. J. R. Stat. Soc. B 65, 95-114 (2003).
    • (2003) J. R. Stat. Soc. B , vol.65 , pp. 95-114
    • Wood, S.N.1
  • 42
    • 84856609541 scopus 로고    scopus 로고
    • Priors for Bayesian adaptive spline smoothing
    • Yue, Y., Speckman, P., Sun, D.: Priors for Bayesian adaptive spline smoothing. Ann. Inst. Stat. Math. 64, 577-613 (2012).
    • (2012) Ann. Inst. Stat. Math. , vol.64 , pp. 577-613
    • Yue, Y.1    Speckman, P.2    Sun, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.