메뉴 건너뛰기




Volumn 10, Issue 3, 2001, Pages 581-591

Cross-validating non-gaussian data: Generalized approximate cross-validation revisited

Author keywords

Kullback leibler loss; Penalized likelihood; Smoothing parameter

Indexed keywords


EID: 0035622815     PISSN: 10618600     EISSN: 15372715     Source Type: Journal    
DOI: 10.1198/106186001317114992     Document Type: Article
Times cited : (30)

References (18)
  • 2
    • 34250263445 scopus 로고
    • Smoothing Noisy Data With Spline Functions: Estimating the Correct Degree of Smoothing by the Method of Generalized Cross-Validation
    • Craven, P., and Wahba, G. (1979), “Smoothing Noisy Data With Spline Functions: Estimating the Correct Degree of Smoothing by the Method of Generalized Cross-Validation,” Numerische Mathematik, 31, 377-403.
    • (1979) Numerische Mathematik , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 4
    • 0002117007 scopus 로고
    • Semi-Parametric Generalized Linear Models
    • New York: Springer-Verlag
    • Green, P., and Yandell, B. (1985), “Semi-Parametric Generalized Linear Models,” in Proceedings of the GLIM85 Conference, New York: Springer-Verlag, pp. 44-55.
    • (1985) Proceedings of the GLIM85 Conference , pp. 44-55
    • Green, P.1    Yandell, B.2
  • 5
    • 0002239505 scopus 로고
    • Rkpack and its Applications: Fitting Smoothing Spline Models
    • Alexandria, VA: American Statisticial Association
    • Gu, C. (1989), “Rkpack and its Applications: Fitting Smoothing Spline Models,” in ASA Proceedings ofStatistical Computing Section, Alexandria, VA: American Statisticial Association, pp. 42-51.
    • (1989) ASA Proceedings Ofstatistical Computing Section , pp. 42-51
    • Gu, C.1
  • 6
    • 0001068677 scopus 로고
    • Adaptive Spline Smoothing in Non-Gaussian Regression Models
    • Gu, C. (1990), “Adaptive Spline Smoothing in Non-Gaussian Regression Models,” Journal of the American Statistical association, 85, 801-807.
    • (1990) Journal of the American Statistical association , vol.85 , pp. 801-807
    • Gu, C.1
  • 8
    • 0000506506 scopus 로고
    • Penalized Likelihood Regression: A Bayesian Analysis
    • Gu, C. (1992b), “Penalized Likelihood Regression: A Bayesian Analysis,” Statistica Sinica, 2, 255-264.
    • (1992) Statistica Sinica , vol.2 , pp. 255-264
    • Gu, C.1
  • 9
    • 21144484353 scopus 로고
    • Smoothing Spline Density Estimation: A Dimensionless Automatic Algorithm
    • Gu, C. (1993), “Smoothing Spline Density Estimation: A Dimensionless Automatic Algorithm,” Journal of American Statistical Association, 88, 495-504.
    • (1993) Journal of American Statistical Association , vol.88 , pp. 495-504
    • Gu, C.1
  • 10
    • 0032389885 scopus 로고    scopus 로고
    • Structural Multivariate Function Estimation: Some Automatic Density and Hazard Estimates
    • Gu, C. (1998), “Structural Multivariate Function Estimation: Some Automatic Density and Hazard Estimates,” Statistica Sinica, 8, 317-335.
    • (1998) Statistica Sinica , vol.8 , pp. 317-335
    • Gu, C.1
  • 11
    • 0002970891 scopus 로고
    • Smoothing Noisy Data With Spline Functions
    • Hutchinson, M. F., and de Hoog, F. R. (1985), “Smoothing Noisy Data With Spline Functions,” Numerische Mathematik, 47, 99-106.
    • (1985) Numerische Mathematik , vol.47 , pp. 99-106
    • Hutchinson, M.F.1    De Hoog, F.R.2
  • 12
    • 0008295015 scopus 로고    scopus 로고
    • Smoothing Spline ANOVA Models for Large Data Sets With Bernoulli Observations and the Randomized GACV
    • Department of Statistics, University of Wisconsin, Madison, WI
    • Lin, X., Wahba, G., Xiang, D., Gao, F., Klein, R., and Klein, B. (1998), “Smoothing Spline ANOVA Models for Large Data Sets With Bernoulli Observations and the Randomized GACV,” Technical Report 998, Department of Statistics, University of Wisconsin, Madison, WI.
    • (1998) Technical Report , vol.998
    • Lin, X.1    Wahba, G.2    Xiang, D.3    Gao, F.4    Klein, R.5    Klein, B.6
  • 14
    • 0009034842 scopus 로고
    • Discussion of “Some Aspects of the Spline Smoothing Approach to Nonparametric Re gression Curve Fitting
    • by B. Silverman
    • O’Sullivan, F. (1985), Discussion of “Some Aspects of the Spline Smoothing Approach to Nonparametric Re gression Curve Fitting” by B. Silverman, Journal of the Royal Statistical Society, Ser. B, 47, 39-40.
    • (1985) Journal of the Royal Statistical Society, Ser. B , vol.47 , pp. 39-40
    • O’sullivan, F.1
  • 16
    • 0012951472 scopus 로고
    • Density Ratios, Empirical Likelihood and Cot Death
    • Silverman, B. W. (1978), “Density Ratios, Empirical Likelihood and Cot Death,” Applied Statistics, 27, 26-33.
    • (1978) Applied Statistics , vol.27 , pp. 26-33
    • Silverman, B.W.1
  • 17
    • 85011495749 scopus 로고
    • Volume, ofCBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia: SIAM
    • Wahba, G. (1990), Spline Models for Observational Data, Volume 59 ofCBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia: SIAM.
    • (1990) Spline Models for Observational Data , vol.59
    • Wahba, G.1
  • 18
    • 21444449622 scopus 로고    scopus 로고
    • A Generalized Approximate Cross Validation for Smoothing Splines With non-Gaussian Data
    • Xiang, D., and Wahba, G. (1996), “A Generalized Approximate Cross Validation for Smoothing Splines With non-Gaussian Data,” Statistica Sinica, 6, 675-692
    • (1996) Statistica Sinica , vol.6 , pp. 675-692
    • Xiang, D.1    Wahba, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.