메뉴 건너뛰기




Volumn 89, Issue , 2018, Pages 98-110

The current landscape of learning analytics in higher education

Author keywords

Evidence; Higher education; Learning analytics; Literature review; Research methods

Indexed keywords

BEHAVIORAL RESEARCH; HUMAN COMPUTER INTERACTION;

EID: 85053083367     PISSN: 07475632     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chb.2018.07.027     Document Type: Review
Times cited : (446)

References (93)
  • 1
    • 84892436720 scopus 로고    scopus 로고
    • Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning
    • Agudo-Peregrina, Á.F., Iglesias-Pradas, S., Conde-González, M.Á., Hernández-García, Á., Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning. Computers in Human Behavior 31 (2014), 542–550.
    • (2014) Computers in Human Behavior , vol.31 , pp. 542-550
    • Agudo-Peregrina, Á.F.1    Iglesias-Pradas, S.2    Conde-González, M.Á.3    Hernández-García, Á.4
  • 2
    • 84869868900 scopus 로고    scopus 로고
    • Factors influencing beliefs for adoption of a learning analytic tool: An empirical study
    • Ali, L., Asadi, M., Gašević D., Jovanovic, J., Hatala, M., Factors influencing beliefs for adoption of a learning analytic tool: An empirical study. Computers & Education 62 (2013), 130–148.
    • (2013) Computers & Education , vol.62 , pp. 130-148
    • Ali, L.1    Asadi, M.2    Gašević, D.3    Jovanovic, J.4    Hatala, M.5
  • 7
    • 84975321434 scopus 로고    scopus 로고
    • Learning analytics methods, benefits, and challenges in higher education: A systematic literature review
    • Avella, J., Kebritchi, M., Nunn, S., Kanai, T., Learning analytics methods, benefits, and challenges in higher education: A systematic literature review. Online Learning 20:2 (2016), 13–29.
    • (2016) Online Learning , vol.20 , Issue.2 , pp. 13-29
    • Avella, J.1    Kebritchi, M.2    Nunn, S.3    Kanai, T.4
  • 8
    • 84929466971 scopus 로고    scopus 로고
    • Self-regulated learning strategies and academic achievement in online higher education learning environments: A systematic review
    • Broadbent, J., Poon, W., Self-regulated learning strategies and academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education 27 (2015), 1–15.
    • (2015) The Internet and Higher Education , vol.27 , pp. 1-15
    • Broadbent, J.1    Poon, W.2
  • 11
    • 85053076478 scopus 로고    scopus 로고
    • Using keystroke analytics to improve pass-fail classifiers
    • Casey, K., Using keystroke analytics to improve pass-fail classifiers. Journal of Learning Analytics 4:2 (2017), 189–211.
    • (2017) Journal of Learning Analytics , vol.4 , Issue.2 , pp. 189-211
    • Casey, K.1
  • 12
    • 84955180632 scopus 로고    scopus 로고
    • Students’ personal networks in virtual and personal learning environments: A case study in higher education using learning analytics approach
    • Casquero, O., Ovelar, R., Romo, J., Benito, M., Alberdi, M., Students’ personal networks in virtual and personal learning environments: A case study in higher education using learning analytics approach. Interactive learning environments 24:1 (2013), 49–67.
    • (2013) Interactive learning environments , vol.24 , Issue.1 , pp. 49-67
    • Casquero, O.1    Ovelar, R.2    Romo, J.3    Benito, M.4    Alberdi, M.5
  • 15
    • 84884289320 scopus 로고    scopus 로고
    • An overview of learning analytics
    • Clow, D., An overview of learning analytics. Teaching in Higher Education 18:6 (2013), 683–695.
    • (2013) Teaching in Higher Education , vol.18 , Issue.6 , pp. 683-695
    • Clow, D.1
  • 16
    • 84939571007 scopus 로고    scopus 로고
    • Big Data and analytics in higher education: Opportunities and challenges
    • Daniel, B., Big Data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology 46:5 (2015), 904–920.
    • (2015) British Journal of Educational Technology , vol.46 , Issue.5 , pp. 904-920
    • Daniel, B.1
  • 19
    • 84961282117 scopus 로고    scopus 로고
    • The MOOC and learning analytics innovative cycle (MOLAC): A reflective summary of ongoing research and its challenges
    • Drachsler, H., Kalz, M., The MOOC and learning analytics innovative cycle (MOLAC): A reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning 32 (2016), 281–290.
    • (2016) Journal of Computer Assisted Learning , vol.32 , pp. 281-290
    • Drachsler, H.1    Kalz, M.2
  • 23
    • 85030118523 scopus 로고    scopus 로고
    • Research evidence of the use of learing analytics; implications for education policy
    • R. Vuorikari J. Castano-Munoz Joint Research Centre Science for Policy Report Luxembourg
    • Ferguson, R., Brasher, A., Cooper, A., Hillaire, G., Mittelmeier, J., Rienties, B., Vuorikari, R., Research evidence of the use of learing analytics; implications for education policy. Vuorikari, R., Castano-Munoz, J., (eds.) A European framework for action on learning analytics, 2016, Joint Research Centre Science for Policy Report, Luxembourg, 1–152.
    • (2016) A European framework for action on learning analytics , pp. 1-152
    • Ferguson, R.1    Brasher, A.2    Cooper, A.3    Hillaire, G.4    Mittelmeier, J.5    Rienties, B.6    Vuorikari, R.7
  • 28
    • 85053073997 scopus 로고    scopus 로고
    • Goffman's front stage and backstage behaviours in online education
    • Gilmore, D., Goffman's front stage and backstage behaviours in online education. Journal of Learning Analytics 1:3 (2014), 187–190.
    • (2014) Journal of Learning Analytics , vol.1 , Issue.3 , pp. 187-190
    • Gilmore, D.1
  • 31
    • 85053075135 scopus 로고    scopus 로고
    • Individual differences related to college students’ course performance in Calculus II
    • Hart, S., Daucourt, M., Ganley, C., Individual differences related to college students’ course performance in Calculus II. Journal of Learning Analytics 4:2 (2017), 129–153.
    • (2017) Journal of Learning Analytics , vol.4 , Issue.2 , pp. 129-153
    • Hart, S.1    Daucourt, M.2    Ganley, C.3
  • 35
    • 84933565975 scopus 로고    scopus 로고
    • Predicting course outcomes with digital textbook usage data
    • Junco, R., Clem, C., Predicting course outcomes with digital textbook usage data. The Internet and Higher Education 27 (2015), 54–63.
    • (2015) The Internet and Higher Education , vol.27 , pp. 54-63
    • Junco, R.1    Clem, C.2
  • 37
    • 85020110819 scopus 로고    scopus 로고
    • Bringing abstract academic integrity and ethical concepts into real-life situations. Technology
    • Kwong, T., Wong, E., Yue, K., Bringing abstract academic integrity and ethical concepts into real-life situations. Technology. Knowledge and Learning 22:3 (2017), 353–368.
    • (2017) Knowledge and Learning , vol.22 , Issue.3 , pp. 353-368
    • Kwong, T.1    Wong, E.2    Yue, K.3
  • 39
    • 84984621936 scopus 로고    scopus 로고
    • Identification of “At Risk” students using learning analytics: The ethical dilemmas of intervention strategies in higher education institution
    • Lawson, C., Beer, C., Dolene, R., Moore, T., Fleming, J., Identification of “At Risk” students using learning analytics: The ethical dilemmas of intervention strategies in higher education institution. Educational Technology Research & Development 64:5 (2016), 957–968.
    • (2016) Educational Technology Research & Development , vol.64 , Issue.5 , pp. 957-968
    • Lawson, C.1    Beer, C.2    Dolene, R.3    Moore, T.4    Fleming, J.5
  • 40
    • 85010304260 scopus 로고    scopus 로고
    • Rethinking the accessibility of online higher education: A historical overview
    • Lee, K., Rethinking the accessibility of online higher education: A historical overview. The Internet and Higher Education 33 (2017), 15–23.
    • (2017) The Internet and Higher Education , vol.33 , pp. 15-23
    • Lee, K.1
  • 43
    • 85025452120 scopus 로고    scopus 로고
    • Inferring learning from big Data: The importance of a transdisciplinary and multidimensional approach
    • Lodge, J.M., Alhadad, S.S., Lewis, M.J., Gašević D., Inferring learning from big Data: The importance of a transdisciplinary and multidimensional approach. Technology, Knowledge and Learning 22:3 (2017), 385–400.
    • (2017) Technology, Knowledge and Learning , vol.22 , Issue.3 , pp. 385-400
    • Lodge, J.M.1    Alhadad, S.S.2    Lewis, M.J.3    Gašević, D.4
  • 44
    • 81355163763 scopus 로고    scopus 로고
    • Penetrating the fog: Analytics in learning and education
    • Long, P., Siemens, G., Penetrating the fog: Analytics in learning and education. Educause Review 46:5 (2011), 31–40.
    • (2011) Educause Review , vol.46 , Issue.5 , pp. 31-40
    • Long, P.1    Siemens, G.2
  • 46
    • 84973621417 scopus 로고    scopus 로고
    • Learning analytics and digital badges: Potential impact on student retention in higher education
    • Mah, D.-K., Learning analytics and digital badges: Potential impact on student retention in higher education. Technology, Knowledge and Learning 21:3 (2016), 285–305.
    • (2016) Technology, Knowledge and Learning , vol.21 , Issue.3 , pp. 285-305
    • Mah, D.-K.1
  • 48
    • 85030534319 scopus 로고    scopus 로고
    • Teachers as producers of data analytics: A case study of a teacher-focused educational data science program
    • McCoy, C., Shih, P., Teachers as producers of data analytics: A case study of a teacher-focused educational data science program. Journal of Learning Analytics 3:3 (2016), 193–214.
    • (2016) Journal of Learning Analytics , vol.3 , Issue.3 , pp. 193-214
    • McCoy, C.1    Shih, P.2
  • 54
    • 84898828427 scopus 로고    scopus 로고
    • Participation in virtual academic communities of practice under the influence of technology acceptance and community factors. A learning analytics application
    • Nistor, N., Baltes, B., Dascălu, M., Mihăilă D., Smeaton, G., Trăuşan-Matu, Ş., Participation in virtual academic communities of practice under the influence of technology acceptance and community factors. A learning analytics application. Computers in Human Behavior 34 (2014), 339–344.
    • (2014) Computers in Human Behavior , vol.34 , pp. 339-344
    • Nistor, N.1    Baltes, B.2    Dascălu, M.3    Mihăilă, D.4    Smeaton, G.5    Trăuşan-Matu, Ş.6
  • 58
    • 84908503241 scopus 로고    scopus 로고
    • Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence
    • Papamitsiou, Z., Economides, A., Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Educational Technology & Society 17:4 (2014), 49–64.
    • (2014) Educational Technology & Society , vol.17 , Issue.4 , pp. 49-64
    • Papamitsiou, Z.1    Economides, A.2
  • 60
    • 85041124927 scopus 로고    scopus 로고
    • Learning analytics: A glance of evolution, status, and trends according to a proposed taxonomy
    • 2018, 8: null
    • Peña-Ayala, A., Learning analytics: A glance of evolution, status, and trends according to a proposed taxonomy. WIREs Data Mining Knowl Discov, 2018, 10.1002/widm.1243 2018, 8: null.
    • (2018) WIREs Data Mining Knowl Discov
    • Peña-Ayala, A.1
  • 61
    • 84872316853 scopus 로고    scopus 로고
    • The evolution of big data and learning analytics in American higher education
    • Picciano, A., The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks 16:3 (2012), 9–20.
    • (2012) Journal of Asynchronous Learning Networks , vol.16 , Issue.3 , pp. 9-20
    • Picciano, A.1
  • 62
    • 84991567002 scopus 로고    scopus 로고
    • Student vulnerability, agency, and learning analytics: An exploration
    • Prinsloo, P., Slade, S., Student vulnerability, agency, and learning analytics: An exploration. Journal of Learning Analytics 3:1 (2016), 159–182.
    • (2016) Journal of Learning Analytics , vol.3 , Issue.1 , pp. 159-182
    • Prinsloo, P.1    Slade, S.2
  • 67
    • 84957795176 scopus 로고    scopus 로고
    • Student privacy in learning analytics: An information ethics perspective
    • Rubel, A., Jones, K., Student privacy in learning analytics: An information ethics perspective. The Information Society 32:2 (2016), 143–159.
    • (2016) The Information Society , vol.32 , Issue.2 , pp. 143-159
    • Rubel, A.1    Jones, K.2
  • 69
    • 85023619557 scopus 로고    scopus 로고
    • Features students really expect from learning analytics
    • Schumacher, C., Ifenthaler, D., Features students really expect from learning analytics. Computers in Human Behavior 7 (2018), 397–407.
    • (2018) Computers in Human Behavior , vol.7 , pp. 397-407
    • Schumacher, C.1    Ifenthaler, D.2
  • 71
    • 84973535836 scopus 로고    scopus 로고
    • Application of big data in educational data mining and learning analytics - a literature review
    • Sin, K., Muthu, L., Application of big data in educational data mining and learning analytics - a literature review. ICTAC Journal of Soft Computing 5:4 (2015), 1035–1049.
    • (2015) ICTAC Journal of Soft Computing , vol.5 , Issue.4 , pp. 1035-1049
    • Sin, K.1    Muthu, L.2
  • 72
    • 84876460204 scopus 로고    scopus 로고
    • Learning analytics: Ethical issues and dilemmas
    • Slade, S., Prinsloo, P., Learning analytics: Ethical issues and dilemmas. American Behavioral Scientist 57:10 (2013), 1510–1529.
    • (2013) American Behavioral Scientist , vol.57 , Issue.10 , pp. 1510-1529
    • Slade, S.1    Prinsloo, P.2
  • 73
    • 85012947037 scopus 로고    scopus 로고
    • Discovering the effects of metacognitive prompts on the sequential structure of SRL-processes using process mining techniques
    • Sonnerberg, C., Bannert, M., Discovering the effects of metacognitive prompts on the sequential structure of SRL-processes using process mining techniques. Journal of Learning Analytics 2:1 (2015), 72–100.
    • (2015) Journal of Learning Analytics , vol.2 , Issue.1 , pp. 72-100
    • Sonnerberg, C.1    Bannert, M.2
  • 74
    • 85018817661 scopus 로고    scopus 로고
    • Beyond engagement analytics: Which online mixed-data factors predict student learning outcomes?
    • Strang, K., Beyond engagement analytics: Which online mixed-data factors predict student learning outcomes?. Education and Information Technologies 20:4 (2016), 1–21.
    • (2016) Education and Information Technologies , vol.20 , Issue.4 , pp. 1-21
    • Strang, K.1
  • 75
    • 84942543949 scopus 로고    scopus 로고
    • Time will tell: The role of mobile learning analytics in self-regulated learning
    • Tabuenca, B., Kalz, M., Drachsler, H., Specht, M., Time will tell: The role of mobile learning analytics in self-regulated learning. Computers & Education 89 (2015), 53–74.
    • (2015) Computers & Education , vol.89 , pp. 53-74
    • Tabuenca, B.1    Kalz, M.2    Drachsler, H.3    Specht, M.4
  • 77
    • 85027932823 scopus 로고    scopus 로고
    • In search for the most informative data for feedback generation: Learning analytics in a data-rich context
    • Tempelaar, D., Rienties, B., Giesbers, B., In search for the most informative data for feedback generation: Learning analytics in a data-rich context. Computers in Human Behavior 47 (2015), 157–167.
    • (2015) Computers in Human Behavior , vol.47 , pp. 157-167
    • Tempelaar, D.1    Rienties, B.2    Giesbers, B.3
  • 81
    • 85027322023 scopus 로고    scopus 로고
    • Design and use of mobile technology in distance language education: Matching learning practices with technologies-in-practice
    • Doctoral dissertation Örebro University Sweden
    • Viberg, O., Design and use of mobile technology in distance language education: Matching learning practices with technologies-in-practice. Doctoral dissertation, 2015, Örebro University, Sweden.
    • (2015)
    • Viberg, O.1
  • 83
    • 85027960866 scopus 로고    scopus 로고
    • Improving early warning systems with categorized course resource usage
    • Waddington, T., Nam, S., Lonn, S., Teasley, S., Improving early warning systems with categorized course resource usage. Journal of Learning Analytics 3:3 (2016), 263–290.
    • (2016) Journal of Learning Analytics , vol.3 , Issue.3 , pp. 263-290
    • Waddington, T.1    Nam, S.2    Lonn, S.3    Teasley, S.4
  • 84
    • 0012903874 scopus 로고    scopus 로고
    • Analyzing the past to prepare for the future: Writing a literature review
    • Webster, J., Watson, R., Analyzing the past to prepare for the future: Writing a literature review. Management Information Systems Quarterly 26:2 (2002), xiii–xxiii.
    • (2002) Management Information Systems Quarterly , vol.26 , Issue.2 , pp. xiii-xxiii
    • Webster, J.1    Watson, R.2
  • 85
    • 84975317681 scopus 로고    scopus 로고
    • Let's Talk learning analytics: A framework for implementation in relation to student retention
    • West, D., Heath, D., Huijser, H., Let's Talk learning analytics: A framework for implementation in relation to student retention. Online Learning 20:2 (2016), 30–50.
    • (2016) Online Learning , vol.20 , Issue.2 , pp. 30-50
    • West, D.1    Heath, D.2    Huijser, H.3
  • 87
    • 84979988442 scopus 로고    scopus 로고
    • Assessing collaborative learning: Big data, analytics and university futures
    • Williams, P., Assessing collaborative learning: Big data, analytics and university futures. Assessment & Evaluation in Higher Education 42:6 (2017), 978–989.
    • (2017) Assessment & Evaluation in Higher Education , vol.42 , Issue.6 , pp. 978-989
    • Williams, P.1
  • 88
    • 84857653723 scopus 로고    scopus 로고
    • Microanalytic case studies of individual participation patterns in an asynchronous online discussion in an undergraduate blended course
    • Wise, A., Perera, N., Hsiao, Y.-T., Speer, J., Marbouti, F., Microanalytic case studies of individual participation patterns in an asynchronous online discussion in an undergraduate blended course. The Internet and Higher Education 15 (2012), 108–117.
    • (2012) The Internet and Higher Education , vol.15 , pp. 108-117
    • Wise, A.1    Perera, N.2    Hsiao, Y.-T.3    Speer, J.4    Marbouti, F.5
  • 89
    • 84975226465 scopus 로고    scopus 로고
    • Developing learning analytics design knowledge in the “middle space”: The student tuning model and align design framework for learning analytics work
    • Wise, A., Vytasek, J., Hausknecht, S., Zhao, Y., Developing learning analytics design knowledge in the “middle space”: The student tuning model and align design framework for learning analytics work. Online Learning 20:2 (2016), 155–182.
    • (2016) Online Learning , vol.20 , Issue.2 , pp. 155-182
    • Wise, A.1    Vytasek, J.2    Hausknecht, S.3    Zhao, Y.4
  • 93
    • 84924252472 scopus 로고    scopus 로고
    • Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory
    • Xing, W., Guo, R., Petakovic, E., Goggins, S., Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory. Computers in Human Behavior 47 (2015), 168–181.
    • (2015) Computers in Human Behavior , vol.47 , pp. 168-181
    • Xing, W.1    Guo, R.2    Petakovic, E.3    Goggins, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.