메뉴 건너뛰기




Volumn 27, Issue 10, 2018, Pages 1868-1883

Big Data Analytics in Operations Management

Author keywords

applications and case studies; Big data analytics; big data methods; data driven optimization; operations management

Indexed keywords


EID: 85052050617     PISSN: 10591478     EISSN: 19375956     Source Type: Journal    
DOI: 10.1111/poms.12838     Document Type: Article
Times cited : (564)

References (73)
  • 1
    • 84907580576 scopus 로고    scopus 로고
    • Editorial – big data, data science, and analytics: The opportunity and challenge for IS research
    • Agarwal, R., V. Dhar. 2014. Editorial – big data, data science, and analytics: The opportunity and challenge for IS research. Inf. Syst. Res. 25(3): 443–448.
    • (2014) Inf. Syst. Res. , vol.25 , Issue.3 , pp. 443-448
    • Agarwal, R.1    Dhar, V.2
  • 3
    • 85027396040 scopus 로고    scopus 로고
    • Security events and vulnerability data for cyber security risk
    • Allodi, L., F. Massacci. 2017. Security events and vulnerability data for cyber security risk. Risk Anal. 37(8): 1607–1627.
    • (2017) Risk Anal. , vol.37 , Issue.8 , pp. 1607-1627
    • Allodi, L.1    Massacci, F.2
  • 4
    • 84980001517 scopus 로고    scopus 로고
    • Big data initiatives in retail environments: Linking service process perceptions to shopping outcomes
    • Aloysius, J. A., H. Hoehle, S. Goodarzi, V. Venkatesh. 2018. Big data initiatives in retail environments: Linking service process perceptions to shopping outcomes. Ann. Oper. Res. 270(1-2): 25–51. https://doi.org/10.1007/s10479-016-2276-3.
    • (2018) Ann. Oper. Res. , vol.270 , Issue.1-2 , pp. 25-51
    • Aloysius, J.A.1    Hoehle, H.2    Goodarzi, S.3    Venkatesh, V.4
  • 5
    • 84902274479 scopus 로고    scopus 로고
    • Tie strength, embeddedness, and social influence: A large-scale networked experiment
    • Aral, S., D. Walker. 2014. Tie strength, embeddedness, and social influence: A large-scale networked experiment. Management Sci. 60(6): 1352–1370.
    • (2014) Management Sci. , vol.60 , Issue.6 , pp. 1352-1370
    • Aral, S.1    Walker, D.2
  • 6
    • 85020414759 scopus 로고    scopus 로고
    • Assessing sustainability of supply chains by double frontier network DEA: A big data approach
    • Badiezadeh, T., R. F. Saen, T. Samavati. 2018. Assessing sustainability of supply chains by double frontier network DEA: A big data approach. Comput. Oper. Res. 98: 284–290. https://doi.org/10.1016/j.cor.2017.06.003.
    • (2018) Comput. Oper. Res. , vol.98 , pp. 284-290
    • Badiezadeh, T.1    Saen, R.F.2    Samavati, T.3
  • 7
    • 84975451982 scopus 로고    scopus 로고
    • Online collaborative filtering on graphs
    • Banerjee, S., S. Sanghavi, S. Shakkottai. 2016. Online collaborative filtering on graphs. Oper. Res. 64(3): 756–769.
    • (2016) Oper. Res. , vol.64 , Issue.3 , pp. 756-769
    • Banerjee, S.1    Sanghavi, S.2    Shakkottai, S.3
  • 9
    • 84995704319 scopus 로고    scopus 로고
    • Inventory management in the era of big data
    • Bertsimas, D., N. Kallus, A. Hussain. 2016. Inventory management in the era of big data. Prod. Oper. Manag. 25(12): 2002–2013.
    • (2016) Prod. Oper. Manag. , vol.25 , Issue.12 , pp. 2002-2013
    • Bertsimas, D.1    Kallus, N.2    Hussain, A.3
  • 10
    • 85021388654 scopus 로고    scopus 로고
    • Satellite data and machine learning for weather risk management and food security
    • Biffis, E., E. Chavez. 2017. Satellite data and machine learning for weather risk management and food security. Risk Anal. 37(8): 1508–1520.
    • (2017) Risk Anal. , vol.37 , Issue.8 , pp. 1508-1520
    • Biffis, E.1    Chavez, E.2
  • 11
    • 84988355021 scopus 로고    scopus 로고
    • A framework for investigating optimization of service parts performance with big data
    • Boone, C. A., B. T. Hazen, B. Skipper, R. E. Overstreet. 2018. A framework for investigating optimization of service parts performance with big data. Ann. Oper. Res. 270(1-2): 65–74. https://doi.org/10.1007/s10479-016-2314-1.
    • (2018) Ann. Oper. Res. , vol.270 , Issue.1-2 , pp. 65-74
    • Boone, C.A.1    Hazen, B.T.2    Skipper, B.3    Overstreet, R.E.4
  • 12
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: A survey on big data
    • Chen, C. L. P., C. Y. Zhang. 2014. Data-intensive applications, challenges, techniques and technologies: A survey on big data. Inf. Sci. 275: 314–347.
    • (2014) Inf. Sci. , vol.275 , pp. 314-347
    • Chen, C.L.P.1    Zhang, C.Y.2
  • 13
    • 84916597404 scopus 로고    scopus 로고
    • Business intelligence and analytics: From big data to big impact
    • Chen, H., R. H. L. Chiang, V. C. Storey. 2012. Business intelligence and analytics: From big data to big impact. MIS Q. 36(4): 1165–1188.
    • (2012) MIS Q. , vol.36 , Issue.4 , pp. 1165-1188
    • Chen, H.1    Chiang, R.H.L.2    Storey, V.C.3
  • 14
    • 85009291701 scopus 로고    scopus 로고
    • Incorporating social media observations and bounded rationality into fashion quick response supply chains in the big data era
    • Pages
    • Choi, T. M. 2018. Incorporating social media observations and bounded rationality into fashion quick response supply chains in the big data era. Transp. Res. E. 114: Pages 386–397. https://doi.org/10.1016/j.tre.2016.11.006.
    • (2018) Transp. Res. E , vol.114 , pp. 386-397
    • Choi, T.M.1
  • 15
    • 85027398105 scopus 로고    scopus 로고
    • Advances in risk analysis with big data
    • Choi, T. M., J. H. Lambert. 2017. Advances in risk analysis with big data. Risk Anal. 37(8): 1435–1442.
    • (2017) Risk Anal. , vol.37 , Issue.8 , pp. 1435-1442
    • Choi, T.M.1    Lambert, J.H.2
  • 16
    • 84960425864 scopus 로고    scopus 로고
    • Multi-methodological research in operations management
    • Choi, T. M., T. C. E. Cheng, X. Zhao. 2016. Multi-methodological research in operations management. Prod. Oper. Manag. 25(3): 379–389.
    • (2016) Prod. Oper. Manag. , vol.25 , Issue.3 , pp. 379-389
    • Choi, T.M.1    Cheng, T.C.E.2    Zhao, X.3
  • 17
    • 85007608251 scopus 로고    scopus 로고
    • Recent development in big data analytics for business operations and risk management
    • Choi, T. M., H. K. Chan, X. Yue. 2017a. Recent development in big data analytics for business operations and risk management. IEEE Trans. Cybern. 47(1): 81–92.
    • (2017) IEEE Trans. Cybern. , vol.47 , Issue.1 , pp. 81-92
    • Choi, T.M.1    Chan, H.K.2    Yue, X.3
  • 19
    • 84937788667 scopus 로고    scopus 로고
    • Predicting consumer product demands via big data: The roles of online promotional marketing and online reviews
    • Chong, A. Y. L., E. Ch'ng, M. J. Liu, B. Li. 2017. Predicting consumer product demands via big data: The roles of online promotional marketing and online reviews. Int. J. Prod. Res. 55(17): 5142–5156.
    • (2017) Int. J. Prod. Res. , vol.55 , Issue.17 , pp. 5142-5156
    • Chong, A.Y.L.1    Ch'ng, E.2    Liu, M.J.3    Li, B.4
  • 20
    • 85006733656 scopus 로고    scopus 로고
    • Cascading delay risk of airline workforce deployments with crew pairing and schedule optimization
    • Chung, C. H., H. L. Ma, H. K. Chan. 2017. Cascading delay risk of airline workforce deployments with crew pairing and schedule optimization. Risk Anal. 37(8): 1443–1458.
    • (2017) Risk Anal. , vol.37 , Issue.8 , pp. 1443-1458
    • Chung, C.H.1    Ma, H.L.2    Chan, H.K.3
  • 21
    • 85018660517 scopus 로고    scopus 로고
    • The operational value of social media information
    • Cui, R., S. Gallino, A. Moreno, D. J. Zhang. 2018. The operational value of social media information. Prod. Oper. Manag. 27(10): 1749–1769.
    • (2018) Prod. Oper. Manag. , vol.27 , Issue.10 , pp. 1749-1769
    • Cui, R.1    Gallino, S.2    Moreno, A.3    Zhang, D.J.4
  • 22
    • 84969812454 scopus 로고    scopus 로고
    • Mining brand perceptions from Twitter social networks
    • Culotta, A., J. Cutler. 2016. Mining brand perceptions from Twitter social networks. Market. Sci. 35(3): 343–362.
    • (2016) Market. Sci. , vol.35 , Issue.3 , pp. 343-362
    • Culotta, A.1    Cutler, J.2
  • 23
    • 84976292353 scopus 로고    scopus 로고
    • A real-time big data gathering algorithm based on indoor wireless sensor networks for risk analysis of industrial operations
    • Ding, X., Y. Tian, Y. Yu. 2016. A real-time big data gathering algorithm based on indoor wireless sensor networks for risk analysis of industrial operations. IEEE Trans. Industr. Inf. 12(3): 1232–1242.
    • (2016) IEEE Trans. Industr. Inf. , vol.12 , Issue.3 , pp. 1232-1242
    • Ding, X.1    Tian, Y.2    Yu, Y.3
  • 26
    • 85025470874 scopus 로고    scopus 로고
    • Collaboration process pattern approach to improving teamwork performance: A data mining based methodology
    • Fan, S., X. Li, J. L. Zhao. 2017. Collaboration process pattern approach to improving teamwork performance: A data mining based methodology. INFORMS J. Comput. 29(3): 438–456.
    • (2017) INFORMS J. Comput. , vol.29 , Issue.3 , pp. 438-456
    • Fan, S.1    Li, X.2    Zhao, J.L.3
  • 27
    • 85053211293 scopus 로고    scopus 로고
    • How research in production and operations management may evolve in the era of big data
    • Feng, Q., G. Shanthikumar. 2018. How research in production and operations management may evolve in the era of big data. Prod. Oper. Manag. 27(9): 1670–1684. https://doi.org/10.1111/poms.12836.
    • (2018) Prod. Oper. Manag. , vol.27 , Issue.9 , pp. 1670-1684
    • Feng, Q.1    Shanthikumar, G.2
  • 28
    • 84956862111 scopus 로고    scopus 로고
    • Analytics for an online retailer: Demand forecasting and price optimization
    • Ferreira, K. J., B. H. A. Lee, D. Simchi-Levi. 2016. Analytics for an online retailer: Demand forecasting and price optimization. Manuf. Serv. Oper. Manag. 18(1): 69–88.
    • (2016) Manuf. Serv. Oper. Manag. , vol.18 , Issue.1 , pp. 69-88
    • Ferreira, K.J.1    Lee, B.H.A.2    Simchi-Levi, D.3
  • 29
    • 85041651103 scopus 로고    scopus 로고
    • Using data and big data in retailing
    • Fisher, M., A. Raman. 2018. Using data and big data in retailing. Prod. Oper. Manag. 27(9): 1665–1669. https://doi.org/10.1111/poms.12846.
    • (2018) Prod. Oper. Manag. , vol.27 , Issue.9 , pp. 1665-1669
    • Fisher, M.1    Raman, A.2
  • 30
    • 85041218479 scopus 로고    scopus 로고
    • Emergence of big data research in operations management, information systems, and healthcare: Past contributions and future roadmap
    • Guha, S., S. Kumar. 2018. Emergence of big data research in operations management, information systems, and healthcare: Past contributions and future roadmap. Prod. Oper. Manag. 27(9): 1724–1735. https://doi.org/10.1111/poms.12833.
    • (2018) Prod. Oper. Manag. , vol.27 , Issue.9 , pp. 1724-1735
    • Guha, S.1    Kumar, S.2
  • 31
    • 84907325157 scopus 로고    scopus 로고
    • The rise of “big data” on cloud computing: Review and open research issues
    • Hashem, I. A. T., I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, S. U. Khan. 2015. The rise of “big data” on cloud computing: Review and open research issues. Inf. Sci. 47: 98–115.
    • (2015) Inf. Sci. , vol.47 , pp. 98-115
    • Hashem, I.A.T.1    Yaqoob, I.2    Anuar, N.B.3    Mokhtar, S.4    Gani, A.5    Khan, S.U.6
  • 32
    • 84923224316 scopus 로고    scopus 로고
    • Toward scalable systems for big data analytics: A technology tutorial
    • Hu, H., Y. Wen, T. Chua, X. Li. 2014. Toward scalable systems for big data analytics: A technology tutorial. IEEE Access 2: 652–687.
    • (2014) IEEE Access , vol.2 , pp. 652-687
    • Hu, H.1    Wen, Y.2    Chua, T.3    Li, X.4
  • 33
    • 85054674335 scopus 로고    scopus 로고
    • Computational optimization and statistical methods for big data analytics: Applications in neuroimaging
    • Huang, S., W. A. Chaovalitwongse. 2015. Computational optimization and statistical methods for big data analytics: Applications in neuroimaging. INFORMS Tutorial Oper. Res. 2015: 71–88.
    • (2015) INFORMS Tutorial Oper. Res. , vol.2015 , pp. 71-88
    • Huang, S.1    Chaovalitwongse, W.A.2
  • 34
    • 84896399858 scopus 로고    scopus 로고
    • Clickstream data and inventory management: Model and empirical analysis
    • Huang, T., J. A. Van Mieghem. 2014. Clickstream data and inventory management: Model and empirical analysis. Prod. Oper. Manag. 23(3): 333–347.
    • (2014) Prod. Oper. Manag. , vol.23 , Issue.3 , pp. 333-347
    • Huang, T.1    Van Mieghem, J.A.2
  • 36
    • 85019614031 scopus 로고    scopus 로고
    • Heuristic modeling for sustainable procurement and logistics in a supply chain using big data
    • Kaur, H., S. P. Singh. 2018. Heuristic modeling for sustainable procurement and logistics in a supply chain using big data. Comput. Oper. Res. 98: 301–321. https://doi.org/10.1016/j.cor.2017.05.008.
    • (2018) Comput. Oper. Res. , vol.98 , pp. 301-321
    • Kaur, H.1    Singh, S.P.2
  • 37
    • 0001154426 scopus 로고    scopus 로고
    • When genetic algorithms work best
    • Kershenbaum, A. 1997. When genetic algorithms work best. INFORMS J. Comput. 9(3): 254–255.
    • (1997) INFORMS J. Comput. , vol.9 , Issue.3 , pp. 254-255
    • Kershenbaum, A.1
  • 38
    • 84947273995 scopus 로고    scopus 로고
    • Learning context-sensitive domain ontologies from folksonomies: A cognitively motivated method
    • Lau, R. Y. K., J. L. Zhao, W. Zhang, Y. Cai, E. W. T. Ngai. 2015. Learning context-sensitive domain ontologies from folksonomies: A cognitively motivated method. INFORMS J. Comput. 27(3): 561–578.
    • (2015) INFORMS J. Comput. , vol.27 , Issue.3 , pp. 561-578
    • Lau, R.Y.K.1    Zhao, J.L.2    Zhang, W.3    Cai, Y.4    Ngai, E.W.T.5
  • 39
    • 85026326419 scopus 로고    scopus 로고
    • Parallel aspect-oriented sentiment analysis for sales forecasting with big data
    • Lau, R. Y. K., W. Zhang, W. Xu. 2018. Parallel aspect-oriented sentiment analysis for sales forecasting with big data. Prod. Oper. Manag. 27(10): 1775–1794. https://doi.org/10.1111/poms.12737.
    • (2018) Prod. Oper. Manag. , vol.27 , Issue.10 , pp. 1775-1794
    • Lau, R.Y.K.1    Zhang, W.2    Xu, W.3
  • 41
    • 84990855945 scopus 로고    scopus 로고
    • Customer demand analysis of the electronic commerce supply chain using big data
    • Li, L., T. Chi, T. Hao, T. Yu. 2018. Customer demand analysis of the electronic commerce supply chain using big data. Ann. Oper. Res. 268: 113. https://doi.org/10.1007/s10479-016-2342-x.
    • (2018) Ann. Oper. Res. , vol.268 , pp. 113
    • Li, L.1    Chi, T.2    Hao, T.3    Yu, T.4
  • 42
    • 85012303898 scopus 로고    scopus 로고
    • A study on supply chain investment decision-making and coordination in the big data environment
    • Liu, P., S. P. Yi. 2018. A study on supply chain investment decision-making and coordination in the big data environment. Ann. Oper. Res. 270(1-2): 235–253. https://doi.org/10.1007/s10479-017-2424-4
    • (2018) Ann. Oper. Res. , vol.270 , Issue.1-2 , pp. 235-253
    • Liu, P.1    Yi, S.P.2
  • 43
    • 84969884848 scopus 로고    scopus 로고
    • A structured analysis of unstructured big data by leveraging cloud computing
    • Liu, X., P. V. Singh, K. Srinivasan. 2016. A structured analysis of unstructured big data by leveraging cloud computing. Market. Sci. 35(3): 363–388.
    • (2016) Market. Sci. , vol.35 , Issue.3 , pp. 363-388
    • Liu, X.1    Singh, P.V.2    Srinivasan, K.3
  • 44
    • 85016611460 scopus 로고    scopus 로고
    • A community perspective on resilience analytics: A visual analysis of community mood
    • López-Cuevas, A., J. Ramírez-Márquez, G. Sanchez-Ante, K. Barker. 2017. A community perspective on resilience analytics: A visual analysis of community mood. Risk Anal. 37(8): 1566–1579.
    • (2017) Risk Anal. , vol.37 , Issue.8 , pp. 1566-1579
    • López-Cuevas, A.1    Ramírez-Márquez, J.2    Sanchez-Ante, G.3    Barker, K.4
  • 45
    • 84991577410 scopus 로고    scopus 로고
    • An optimization-based decision-support tool for post-disaster debris operations
    • Lorca, Á., M. Çelik, Ö. Ergun, P. Keskinocak. 2017. An optimization-based decision-support tool for post-disaster debris operations. Prod. Oper. Manag. 26(6): 1076–1091. https://doi.org/10.1111/poms.12643.
    • (2017) Prod. Oper. Manag. , vol.26 , Issue.6 , pp. 1076-1091
    • Lorca, Á.1    Çelik, M.2    Ergun, Ö.3    Keskinocak, P.4
  • 46
    • 84969791398 scopus 로고    scopus 로고
    • A video-based automated recommender (VAR) system for garments
    • Lu, S., L. Xiao, M. Ding. 2016. A video-based automated recommender (VAR) system for garments. Market. Sci. 35(3): 484–510.
    • (2016) Market. Sci. , vol.35 , Issue.3 , pp. 484-510
    • Lu, S.1    Xiao, L.2    Ding, M.3
  • 47
    • 85027926799 scopus 로고    scopus 로고
    • Traffic flow prediction with big data: A deep learning approach
    • Lv, Y., Y. Duan, W. Kang, Z. Li, F. Wang. 2015. Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2): 865–873.
    • (2015) IEEE Trans. Intell. Transp. Syst. , vol.16 , Issue.2 , pp. 865-873
    • Lv, Y.1    Duan, Y.2    Kang, W.3    Li, Z.4    Wang, F.5
  • 48
    • 70349976559 scopus 로고    scopus 로고
    • Forecasting cancellation rates for services booking revenue management using data mining
    • Morales, D. R., J. Wang. 2010. Forecasting cancellation rates for services booking revenue management using data mining. Eur. J. Oper. Res. 202: 554–562.
    • (2010) Eur. J. Oper. Res. , vol.202 , pp. 554-562
    • Morales, D.R.1    Wang, J.2
  • 49
    • 85017098025 scopus 로고    scopus 로고
    • Product recall decisions in medical device supply chains: A big data analytic approach to evaluating judgement bias
    • Mukherjee, U. K., K. K. Sinha. 2018. Product recall decisions in medical device supply chains: A big data analytic approach to evaluating judgement bias. Prod. Oper. Manag. 27(10): 1816–1833. https://doi.org/10.1111/poms.12696.
    • (2018) Prod. Oper. Manag. , vol.27 , Issue.10 , pp. 1816-1833
    • Mukherjee, U.K.1    Sinha, K.K.2
  • 50
    • 85019420467 scopus 로고    scopus 로고
    • Forecasting for big data: Does suboptimality matter?
    • Nikolopoulos, K., F. Petropoulos. 2018. Forecasting for big data: Does suboptimality matter? Comput. Oper. Res. 98: 322–329. https://doi.org/10.1016/j.cor.2017.05.007.
    • (2018) Comput. Oper. Res. , vol.98 , pp. 322-329
    • Nikolopoulos, K.1    Petropoulos, F.2
  • 52
    • 84970003122 scopus 로고    scopus 로고
    • Service provisioning problem in cloud and multi-cloud systems
    • Passacantando, M., D. Ardgna, A. Savi. 2016. Service provisioning problem in cloud and multi-cloud systems. INFORMS J. Comput. 28(2): 265–277.
    • (2016) INFORMS J. Comput. , vol.28 , Issue.2 , pp. 265-277
    • Passacantando, M.1    Ardgna, D.2    Savi, A.3
  • 53
    • 70449597677 scopus 로고    scopus 로고
    • Evolutionary algorithms for vehicle routing
    • Potvin, J. Y. 2009. Evolutionary algorithms for vehicle routing. INFORMS J. Comput. 21(4): 518–548.
    • (2009) INFORMS J. Comput. , vol.21 , Issue.4 , pp. 518-548
    • Potvin, J.Y.1
  • 54
    • 84897846761 scopus 로고    scopus 로고
    • The service revolution and the transformation of marketing science
    • Rust, R. T., M. H. Huang. 2014. The service revolution and the transformation of marketing science. Market. Sci. 33(2): 206–221.
    • (2014) Market. Sci. , vol.33 , Issue.2 , pp. 206-221
    • Rust, R.T.1    Huang, M.H.2
  • 55
    • 85045201528 scopus 로고    scopus 로고
    • Temporal big data for tactical sales forecasting in the tire industry
    • Sagaert, Y. R., E. Aghezzaf, N. Kourentzes, B. Desmet. 2018. Temporal big data for tactical sales forecasting in the tire industry. Interfaces 48(2): 121–129. https://doi.org/10.1287/inte.2017.0901.
    • (2018) Interfaces , vol.48 , Issue.2 , pp. 121-129
    • Sagaert, Y.R.1    Aghezzaf, E.2    Kourentzes, N.3    Desmet, B.4
  • 56
    • 84983438678 scopus 로고    scopus 로고
    • Customer reviews for demand distribution and sales nowcasting: A big data approach. A big data approach
    • See-To, E. W. K., E. W. T. Ngai. 2018. Customer reviews for demand distribution and sales nowcasting: A big data approach. A big data approach. Ann. Oper. Res. 270(1-2): 415–431. https://doi.org/10.1007/s10479-016-2296-z.
    • (2018) Ann. Oper. Res. , vol.270 , Issue.1-2 , pp. 415-431
    • See-To, E.W.K.1    Ngai, E.W.T.2
  • 57
    • 85034595691 scopus 로고    scopus 로고
    • Exploiting big data in logistics risk assessment via Bayesian nonparametrics
    • Shang, Y., D. Dunson, J. S. Song. 2017. Exploiting big data in logistics risk assessment via Bayesian nonparametrics. Oper. Res. 65(6): 1574–1588. https://doi.org/10.1287/opre.2017.1612.
    • (2017) Oper. Res. , vol.65 , Issue.6 , pp. 1574-1588
    • Shang, Y.1    Dunson, D.2    Song, J.S.3
  • 58
    • 85047021298 scopus 로고    scopus 로고
    • The new frontier of price optimization
    • Simchi-Levi, D. 2017. The new frontier of price optimization. MIT Sloan Manage. Rev. 59(1): 22–26.
    • (2017) MIT Sloan Manage. Rev. , vol.59 , Issue.1 , pp. 22-26
    • Simchi-Levi, D.1
  • 59
    • 84959452301 scopus 로고    scopus 로고
    • Environmental performance evaluation with big data: Theories and methods
    • Song, M. L., R. Fisher, J. Wang, L. Cui. 2018. Environmental performance evaluation with big data: Theories and methods. Ann. Oper. Res. 270(1-2): 459–472. https://doi.org/10.1007/s10479-016-2158-8.
    • (2018) Ann. Oper. Res. , vol.270 , Issue.1-2 , pp. 459-472
    • Song, M.L.1    Fisher, R.2    Wang, J.3    Cui, L.4
  • 60
    • 2542587466 scopus 로고    scopus 로고
    • Relationsip-based clustering and visualization for high-dimensional data mining
    • Strehl, A., J. Ghosh. 2003. Relationsip-based clustering and visualization for high-dimensional data mining. INFORMS J. Comput. 15(2): 208–230.
    • (2003) INFORMS J. Comput. , vol.15 , Issue.2 , pp. 208-230
    • Strehl, A.1    Ghosh, J.2
  • 61
    • 85029167518 scopus 로고    scopus 로고
    • Efficient and rapid machine learning algorithms for big data and dynamic varying systems
    • Sun, F., G. Huang, Q. M. J. Wu, S. Song, D. C. Wunsch II. 2017. Efficient and rapid machine learning algorithms for big data and dynamic varying systems. IEEE Trans. Syst. Man Cybern. Syst. 47(10): 2625–2626.
    • (2017) IEEE Trans. Syst. Man Cybern. Syst. , vol.47 , Issue.10 , pp. 2625-2626
    • Sun, F.1    Huang, G.2    Wu, Q.M.J.3    Song, S.4    Wunsch, D.C.5
  • 62
    • 84908563758 scopus 로고    scopus 로고
    • Toward energy efficient big data gathering in densely distributed sensor networks
    • Takaishi, D., H. Nishiyama, N. Kato, R. Miura. 2014. Toward energy efficient big data gathering in densely distributed sensor networks. IEEE Trans. Emerg. Topics Comput. 2(3): 388–397.
    • (2014) IEEE Trans. Emerg. Topics Comput. , vol.2 , Issue.3 , pp. 388-397
    • Takaishi, D.1    Nishiyama, H.2    Kato, N.3    Miura, R.4
  • 63
    • 85045206975 scopus 로고    scopus 로고
    • Lessons learned from a company dealing with big data
    • Tarvin, D. A., L. Sipeki, A. M. Newman, A. S. Hering. 2018. Lessons learned from a company dealing with big data. Interfaces 48(2): 147–155. https://doi.org/10.1287/inte.2017.0890.
    • (2018) Interfaces , vol.48 , Issue.2 , pp. 147-155
    • Tarvin, D.A.1    Sipeki, L.2    Newman, A.M.3    Hering, A.S.4
  • 64
    • 84947264151 scopus 로고    scopus 로고
    • Optimization of industrial-scale assemble-to-order systems
    • Van Jaarsveld, W., A. Scheller-Wolf. 2015. Optimization of industrial-scale assemble-to-order systems. INFORMS J. Comput. 27(3): 544–560.
    • (2015) INFORMS J. Comput. , vol.27 , Issue.3 , pp. 544-560
    • Van Jaarsveld, W.1    Scheller-Wolf, A.2
  • 65
    • 84900796645 scopus 로고    scopus 로고
    • Data science, predictive analytics and big data: A revolution that will transform supply chain design and management
    • Waller, M. A., S. E. Fawcett. 2013. Data science, predictive analytics and big data: A revolution that will transform supply chain design and management. J. Bus. Log. 34(2): 77–84.
    • (2013) J. Bus. Log. , vol.34 , Issue.2 , pp. 77-84
    • Waller, M.A.1    Fawcett, S.E.2
  • 66
    • 84929509763 scopus 로고    scopus 로고
    • How “big data” can make big impact: Findings from a systematic review and a longitudinal case study
    • Wamba, S. F., S. Akter, A. Edwards, G. Chopin, D. Gnanzou. 2015. How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. Int. J. Prod. Econ. 165: 234–246.
    • (2015) Int. J. Prod. Econ. , vol.165 , pp. 234-246
    • Wamba, S.F.1    Akter, S.2    Edwards, A.3    Chopin, G.4    Gnanzou, D.5
  • 67
    • 85019168583 scopus 로고    scopus 로고
    • Learning from uncertainty for big data
    • Wang, X., Y. He. 2016. Learning from uncertainty for big data. IEEE Syst. Man Cybern. Mag. 2(2): 26–32.
    • (2016) IEEE Syst. Man Cybern. Mag. , vol.2 , Issue.2 , pp. 26-32
    • Wang, X.1    He, Y.2
  • 68
    • 84976471936 scopus 로고    scopus 로고
    • Distribution network design with big data: Model and analysis
    • Wang, G., A. Gunasekaran, E. W. T. Ngai. 2018. Distribution network design with big data: Model and analysis. Ann. Oper. Res. 270(1-2): 539–551. https://doi.org/10.1007/s10479-016-2263-8.
    • (2018) Ann. Oper. Res. , vol.270 , Issue.1-2 , pp. 539-551
    • Wang, G.1    Gunasekaran, A.2    Ngai, E.W.T.3
  • 70
    • 85016436528 scopus 로고    scopus 로고
    • Analysis of traffic crashes involving pedestrians using big data: Investigation of contributing factors and identification of hotspots
    • Xie, K., K. Ozbay, A. Kurkcu, H. Yang. 2017. Analysis of traffic crashes involving pedestrians using big data: Investigation of contributing factors and identification of hotspots. Risk Anal. 37(8): 1459–1476.
    • (2017) Risk Anal. , vol.37 , Issue.8 , pp. 1459-1476
    • Xie, K.1    Ozbay, K.2    Kurkcu, A.3    Yang, H.4
  • 72
    • 84956868790 scopus 로고    scopus 로고
    • Pricing personalized bundles: A new approach and an empirical study
    • Xue, Z., Z. Wang, M. Ettl. 2016. Pricing personalized bundles: A new approach and an empirical study. Manuf. Serv. Oper. Manag. 18(1): 51–68.
    • (2016) Manuf. Serv. Oper. Manag. , vol.18 , Issue.1 , pp. 51-68
    • Xue, Z.1    Wang, Z.2    Ettl, M.3
  • 73
    • 85021332256 scopus 로고    scopus 로고
    • Efficiency evaluation based on data envelopment analysis in the big data context
    • Zhu, Q., J. Wu, M. Song. 2018. Efficiency evaluation based on data envelopment analysis in the big data context. Comput. Oper. Res. 98: 291–300. https://doi.org/10.1016/j.cor.2017.06.017.
    • (2018) Comput. Oper. Res. , vol.98 , pp. 291-300
    • Zhu, Q.1    Wu, J.2    Song, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.