-
1
-
-
84907580576
-
Editorial – big data, data science, and analytics: The opportunity and challenge for IS research
-
Agarwal, R., V. Dhar. 2014. Editorial – big data, data science, and analytics: The opportunity and challenge for IS research. Inf. Syst. Res. 25(3): 443–448.
-
(2014)
Inf. Syst. Res.
, vol.25
, Issue.3
, pp. 443-448
-
-
Agarwal, R.1
Dhar, V.2
-
2
-
-
85021831334
-
The role of big data analytics in internet of things
-
Ahmed, E., I. Yaqoob, I. Hashem, I. Khan, A. Ahmed, M. Imran, A. V. Vasilakos. 2017. The role of big data analytics in internet of things. Comput. Netw. 129(2): 459–471.
-
(2017)
Comput. Netw.
, vol.129
, Issue.2
, pp. 459-471
-
-
Ahmed, E.1
Yaqoob, I.2
Hashem, I.3
Khan, I.4
Ahmed, A.5
Imran, M.6
Vasilakos, A.V.7
-
3
-
-
85027396040
-
Security events and vulnerability data for cyber security risk
-
Allodi, L., F. Massacci. 2017. Security events and vulnerability data for cyber security risk. Risk Anal. 37(8): 1607–1627.
-
(2017)
Risk Anal.
, vol.37
, Issue.8
, pp. 1607-1627
-
-
Allodi, L.1
Massacci, F.2
-
4
-
-
84980001517
-
Big data initiatives in retail environments: Linking service process perceptions to shopping outcomes
-
Aloysius, J. A., H. Hoehle, S. Goodarzi, V. Venkatesh. 2018. Big data initiatives in retail environments: Linking service process perceptions to shopping outcomes. Ann. Oper. Res. 270(1-2): 25–51. https://doi.org/10.1007/s10479-016-2276-3.
-
(2018)
Ann. Oper. Res.
, vol.270
, Issue.1-2
, pp. 25-51
-
-
Aloysius, J.A.1
Hoehle, H.2
Goodarzi, S.3
Venkatesh, V.4
-
5
-
-
84902274479
-
Tie strength, embeddedness, and social influence: A large-scale networked experiment
-
Aral, S., D. Walker. 2014. Tie strength, embeddedness, and social influence: A large-scale networked experiment. Management Sci. 60(6): 1352–1370.
-
(2014)
Management Sci.
, vol.60
, Issue.6
, pp. 1352-1370
-
-
Aral, S.1
Walker, D.2
-
6
-
-
85020414759
-
Assessing sustainability of supply chains by double frontier network DEA: A big data approach
-
Badiezadeh, T., R. F. Saen, T. Samavati. 2018. Assessing sustainability of supply chains by double frontier network DEA: A big data approach. Comput. Oper. Res. 98: 284–290. https://doi.org/10.1016/j.cor.2017.06.003.
-
(2018)
Comput. Oper. Res.
, vol.98
, pp. 284-290
-
-
Badiezadeh, T.1
Saen, R.F.2
Samavati, T.3
-
7
-
-
84975451982
-
Online collaborative filtering on graphs
-
Banerjee, S., S. Sanghavi, S. Shakkottai. 2016. Online collaborative filtering on graphs. Oper. Res. 64(3): 756–769.
-
(2016)
Oper. Res.
, vol.64
, Issue.3
, pp. 756-769
-
-
Banerjee, S.1
Sanghavi, S.2
Shakkottai, S.3
-
8
-
-
84956934080
-
IBM predicts cloud computing demand for sports tournaments
-
Baughman, A. K., R. Bogdany, B. Harrison, B. O'Connell, H. Pearthree, B. Frankel, C. McAvoy, S. Sun, C. Upton. 2016. IBM predicts cloud computing demand for sports tournaments. Interfaces 46(1): 33–48.
-
(2016)
Interfaces
, vol.46
, Issue.1
, pp. 33-48
-
-
Baughman, A.K.1
Bogdany, R.2
Harrison, B.3
O'Connell, B.4
Pearthree, H.5
Frankel, B.6
McAvoy, C.7
Sun, S.8
Upton, C.9
-
9
-
-
84995704319
-
Inventory management in the era of big data
-
Bertsimas, D., N. Kallus, A. Hussain. 2016. Inventory management in the era of big data. Prod. Oper. Manag. 25(12): 2002–2013.
-
(2016)
Prod. Oper. Manag.
, vol.25
, Issue.12
, pp. 2002-2013
-
-
Bertsimas, D.1
Kallus, N.2
Hussain, A.3
-
10
-
-
85021388654
-
Satellite data and machine learning for weather risk management and food security
-
Biffis, E., E. Chavez. 2017. Satellite data and machine learning for weather risk management and food security. Risk Anal. 37(8): 1508–1520.
-
(2017)
Risk Anal.
, vol.37
, Issue.8
, pp. 1508-1520
-
-
Biffis, E.1
Chavez, E.2
-
11
-
-
84988355021
-
A framework for investigating optimization of service parts performance with big data
-
Boone, C. A., B. T. Hazen, B. Skipper, R. E. Overstreet. 2018. A framework for investigating optimization of service parts performance with big data. Ann. Oper. Res. 270(1-2): 65–74. https://doi.org/10.1007/s10479-016-2314-1.
-
(2018)
Ann. Oper. Res.
, vol.270
, Issue.1-2
, pp. 65-74
-
-
Boone, C.A.1
Hazen, B.T.2
Skipper, B.3
Overstreet, R.E.4
-
12
-
-
84900800509
-
Data-intensive applications, challenges, techniques and technologies: A survey on big data
-
Chen, C. L. P., C. Y. Zhang. 2014. Data-intensive applications, challenges, techniques and technologies: A survey on big data. Inf. Sci. 275: 314–347.
-
(2014)
Inf. Sci.
, vol.275
, pp. 314-347
-
-
Chen, C.L.P.1
Zhang, C.Y.2
-
13
-
-
84916597404
-
Business intelligence and analytics: From big data to big impact
-
Chen, H., R. H. L. Chiang, V. C. Storey. 2012. Business intelligence and analytics: From big data to big impact. MIS Q. 36(4): 1165–1188.
-
(2012)
MIS Q.
, vol.36
, Issue.4
, pp. 1165-1188
-
-
Chen, H.1
Chiang, R.H.L.2
Storey, V.C.3
-
14
-
-
85009291701
-
Incorporating social media observations and bounded rationality into fashion quick response supply chains in the big data era
-
Pages
-
Choi, T. M. 2018. Incorporating social media observations and bounded rationality into fashion quick response supply chains in the big data era. Transp. Res. E. 114: Pages 386–397. https://doi.org/10.1016/j.tre.2016.11.006.
-
(2018)
Transp. Res. E
, vol.114
, pp. 386-397
-
-
Choi, T.M.1
-
15
-
-
85027398105
-
Advances in risk analysis with big data
-
Choi, T. M., J. H. Lambert. 2017. Advances in risk analysis with big data. Risk Anal. 37(8): 1435–1442.
-
(2017)
Risk Anal.
, vol.37
, Issue.8
, pp. 1435-1442
-
-
Choi, T.M.1
Lambert, J.H.2
-
16
-
-
84960425864
-
Multi-methodological research in operations management
-
Choi, T. M., T. C. E. Cheng, X. Zhao. 2016. Multi-methodological research in operations management. Prod. Oper. Manag. 25(3): 379–389.
-
(2016)
Prod. Oper. Manag.
, vol.25
, Issue.3
, pp. 379-389
-
-
Choi, T.M.1
Cheng, T.C.E.2
Zhao, X.3
-
17
-
-
85007608251
-
Recent development in big data analytics for business operations and risk management
-
Choi, T. M., H. K. Chan, X. Yue. 2017a. Recent development in big data analytics for business operations and risk management. IEEE Trans. Cybern. 47(1): 81–92.
-
(2017)
IEEE Trans. Cybern.
, vol.47
, Issue.1
, pp. 81-92
-
-
Choi, T.M.1
Chan, H.K.2
Yue, X.3
-
18
-
-
85027414382
-
-
Springer, New York
-
Choi, T. M., J. Gao, J. H. Lambert, C. K. Ng, J. Wang. 2017b. Optimization and Control for Systems in the Big-Data Era: Theory and Applications. Springer, New York.
-
(2017)
Optimization and Control for Systems in the Big-Data Era: Theory and Applications
-
-
Choi, T.M.1
Gao, J.2
Lambert, J.H.3
Ng, C.K.4
Wang, J.5
-
19
-
-
84937788667
-
Predicting consumer product demands via big data: The roles of online promotional marketing and online reviews
-
Chong, A. Y. L., E. Ch'ng, M. J. Liu, B. Li. 2017. Predicting consumer product demands via big data: The roles of online promotional marketing and online reviews. Int. J. Prod. Res. 55(17): 5142–5156.
-
(2017)
Int. J. Prod. Res.
, vol.55
, Issue.17
, pp. 5142-5156
-
-
Chong, A.Y.L.1
Ch'ng, E.2
Liu, M.J.3
Li, B.4
-
20
-
-
85006733656
-
Cascading delay risk of airline workforce deployments with crew pairing and schedule optimization
-
Chung, C. H., H. L. Ma, H. K. Chan. 2017. Cascading delay risk of airline workforce deployments with crew pairing and schedule optimization. Risk Anal. 37(8): 1443–1458.
-
(2017)
Risk Anal.
, vol.37
, Issue.8
, pp. 1443-1458
-
-
Chung, C.H.1
Ma, H.L.2
Chan, H.K.3
-
21
-
-
85018660517
-
The operational value of social media information
-
Cui, R., S. Gallino, A. Moreno, D. J. Zhang. 2018. The operational value of social media information. Prod. Oper. Manag. 27(10): 1749–1769.
-
(2018)
Prod. Oper. Manag.
, vol.27
, Issue.10
, pp. 1749-1769
-
-
Cui, R.1
Gallino, S.2
Moreno, A.3
Zhang, D.J.4
-
22
-
-
84969812454
-
Mining brand perceptions from Twitter social networks
-
Culotta, A., J. Cutler. 2016. Mining brand perceptions from Twitter social networks. Market. Sci. 35(3): 343–362.
-
(2016)
Market. Sci.
, vol.35
, Issue.3
, pp. 343-362
-
-
Culotta, A.1
Cutler, J.2
-
23
-
-
84976292353
-
A real-time big data gathering algorithm based on indoor wireless sensor networks for risk analysis of industrial operations
-
Ding, X., Y. Tian, Y. Yu. 2016. A real-time big data gathering algorithm based on indoor wireless sensor networks for risk analysis of industrial operations. IEEE Trans. Industr. Inf. 12(3): 1232–1242.
-
(2016)
IEEE Trans. Industr. Inf.
, vol.12
, Issue.3
, pp. 1232-1242
-
-
Ding, X.1
Tian, Y.2
Yu, Y.3
-
24
-
-
85021157002
-
Diversity in big data: A review
-
Drosou, M., H. V. Jagadish, E. Pitoura, J. Stoyanovich. 2017. Diversity in big data: A review. Big Data 5(2): 73–84.
-
(2017)
Big Data
, vol.5
, Issue.2
, pp. 73-84
-
-
Drosou, M.1
Jagadish, H.V.2
Pitoura, E.3
Stoyanovich, J.4
-
25
-
-
84908602473
-
A survey of clustering algorithms for big data: Taxonomy and empirical analysis
-
Fahad, A., N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya, S. Foufou, A. Bouras. 2014. A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Trans. Emerg. Topics Comput. 2(3): 267–279.
-
(2014)
IEEE Trans. Emerg. Topics Comput.
, vol.2
, Issue.3
, pp. 267-279
-
-
Fahad, A.1
Alshatri, N.2
Tari, Z.3
Alamri, A.4
Khalil, I.5
Zomaya, A.Y.6
Foufou, S.7
Bouras, A.8
-
26
-
-
85025470874
-
Collaboration process pattern approach to improving teamwork performance: A data mining based methodology
-
Fan, S., X. Li, J. L. Zhao. 2017. Collaboration process pattern approach to improving teamwork performance: A data mining based methodology. INFORMS J. Comput. 29(3): 438–456.
-
(2017)
INFORMS J. Comput.
, vol.29
, Issue.3
, pp. 438-456
-
-
Fan, S.1
Li, X.2
Zhao, J.L.3
-
27
-
-
85053211293
-
How research in production and operations management may evolve in the era of big data
-
Feng, Q., G. Shanthikumar. 2018. How research in production and operations management may evolve in the era of big data. Prod. Oper. Manag. 27(9): 1670–1684. https://doi.org/10.1111/poms.12836.
-
(2018)
Prod. Oper. Manag.
, vol.27
, Issue.9
, pp. 1670-1684
-
-
Feng, Q.1
Shanthikumar, G.2
-
28
-
-
84956862111
-
Analytics for an online retailer: Demand forecasting and price optimization
-
Ferreira, K. J., B. H. A. Lee, D. Simchi-Levi. 2016. Analytics for an online retailer: Demand forecasting and price optimization. Manuf. Serv. Oper. Manag. 18(1): 69–88.
-
(2016)
Manuf. Serv. Oper. Manag.
, vol.18
, Issue.1
, pp. 69-88
-
-
Ferreira, K.J.1
Lee, B.H.A.2
Simchi-Levi, D.3
-
29
-
-
85041651103
-
Using data and big data in retailing
-
Fisher, M., A. Raman. 2018. Using data and big data in retailing. Prod. Oper. Manag. 27(9): 1665–1669. https://doi.org/10.1111/poms.12846.
-
(2018)
Prod. Oper. Manag.
, vol.27
, Issue.9
, pp. 1665-1669
-
-
Fisher, M.1
Raman, A.2
-
30
-
-
85041218479
-
Emergence of big data research in operations management, information systems, and healthcare: Past contributions and future roadmap
-
Guha, S., S. Kumar. 2018. Emergence of big data research in operations management, information systems, and healthcare: Past contributions and future roadmap. Prod. Oper. Manag. 27(9): 1724–1735. https://doi.org/10.1111/poms.12833.
-
(2018)
Prod. Oper. Manag.
, vol.27
, Issue.9
, pp. 1724-1735
-
-
Guha, S.1
Kumar, S.2
-
31
-
-
84907325157
-
The rise of “big data” on cloud computing: Review and open research issues
-
Hashem, I. A. T., I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, S. U. Khan. 2015. The rise of “big data” on cloud computing: Review and open research issues. Inf. Sci. 47: 98–115.
-
(2015)
Inf. Sci.
, vol.47
, pp. 98-115
-
-
Hashem, I.A.T.1
Yaqoob, I.2
Anuar, N.B.3
Mokhtar, S.4
Gani, A.5
Khan, S.U.6
-
32
-
-
84923224316
-
Toward scalable systems for big data analytics: A technology tutorial
-
Hu, H., Y. Wen, T. Chua, X. Li. 2014. Toward scalable systems for big data analytics: A technology tutorial. IEEE Access 2: 652–687.
-
(2014)
IEEE Access
, vol.2
, pp. 652-687
-
-
Hu, H.1
Wen, Y.2
Chua, T.3
Li, X.4
-
33
-
-
85054674335
-
Computational optimization and statistical methods for big data analytics: Applications in neuroimaging
-
Huang, S., W. A. Chaovalitwongse. 2015. Computational optimization and statistical methods for big data analytics: Applications in neuroimaging. INFORMS Tutorial Oper. Res. 2015: 71–88.
-
(2015)
INFORMS Tutorial Oper. Res.
, vol.2015
, pp. 71-88
-
-
Huang, S.1
Chaovalitwongse, W.A.2
-
34
-
-
84896399858
-
Clickstream data and inventory management: Model and empirical analysis
-
Huang, T., J. A. Van Mieghem. 2014. Clickstream data and inventory management: Model and empirical analysis. Prod. Oper. Manag. 23(3): 333–347.
-
(2014)
Prod. Oper. Manag.
, vol.23
, Issue.3
, pp. 333-347
-
-
Huang, T.1
Van Mieghem, J.A.2
-
35
-
-
85020037576
-
A big data analysis approach for rail failure risk assessment
-
Jamshidi, A., S. Faghih-Roohi, S. Hajizadeh, A. Núũez, R. Babuska, R. Dollevoet, Z. Li, B. De Schutter. 2017. A big data analysis approach for rail failure risk assessment. Risk Anal. 37(8): 1495–1507.
-
(2017)
Risk Anal.
, vol.37
, Issue.8
, pp. 1495-1507
-
-
Jamshidi, A.1
Faghih-Roohi, S.2
Hajizadeh, S.3
Núũez, A.4
Babuska, R.5
Dollevoet, R.6
Li, Z.7
De Schutter, B.8
-
36
-
-
85019614031
-
Heuristic modeling for sustainable procurement and logistics in a supply chain using big data
-
Kaur, H., S. P. Singh. 2018. Heuristic modeling for sustainable procurement and logistics in a supply chain using big data. Comput. Oper. Res. 98: 301–321. https://doi.org/10.1016/j.cor.2017.05.008.
-
(2018)
Comput. Oper. Res.
, vol.98
, pp. 301-321
-
-
Kaur, H.1
Singh, S.P.2
-
37
-
-
0001154426
-
When genetic algorithms work best
-
Kershenbaum, A. 1997. When genetic algorithms work best. INFORMS J. Comput. 9(3): 254–255.
-
(1997)
INFORMS J. Comput.
, vol.9
, Issue.3
, pp. 254-255
-
-
Kershenbaum, A.1
-
38
-
-
84947273995
-
Learning context-sensitive domain ontologies from folksonomies: A cognitively motivated method
-
Lau, R. Y. K., J. L. Zhao, W. Zhang, Y. Cai, E. W. T. Ngai. 2015. Learning context-sensitive domain ontologies from folksonomies: A cognitively motivated method. INFORMS J. Comput. 27(3): 561–578.
-
(2015)
INFORMS J. Comput.
, vol.27
, Issue.3
, pp. 561-578
-
-
Lau, R.Y.K.1
Zhao, J.L.2
Zhang, W.3
Cai, Y.4
Ngai, E.W.T.5
-
39
-
-
85026326419
-
Parallel aspect-oriented sentiment analysis for sales forecasting with big data
-
Lau, R. Y. K., W. Zhang, W. Xu. 2018. Parallel aspect-oriented sentiment analysis for sales forecasting with big data. Prod. Oper. Manag. 27(10): 1775–1794. https://doi.org/10.1111/poms.12737.
-
(2018)
Prod. Oper. Manag.
, vol.27
, Issue.10
, pp. 1775-1794
-
-
Lau, R.Y.K.1
Zhang, W.2
Xu, W.3
-
40
-
-
84942374449
-
Big data in product lifecycle management
-
Li, J., F. Tao, Y. Cheng, L. Zhao. 2015. Big data in product lifecycle management. Int. J. Adv. Manuf. Technol. 81: 667–684.
-
(2015)
Int. J. Adv. Manuf. Technol.
, vol.81
, pp. 667-684
-
-
Li, J.1
Tao, F.2
Cheng, Y.3
Zhao, L.4
-
41
-
-
84990855945
-
Customer demand analysis of the electronic commerce supply chain using big data
-
Li, L., T. Chi, T. Hao, T. Yu. 2018. Customer demand analysis of the electronic commerce supply chain using big data. Ann. Oper. Res. 268: 113. https://doi.org/10.1007/s10479-016-2342-x.
-
(2018)
Ann. Oper. Res.
, vol.268
, pp. 113
-
-
Li, L.1
Chi, T.2
Hao, T.3
Yu, T.4
-
42
-
-
85012303898
-
A study on supply chain investment decision-making and coordination in the big data environment
-
Liu, P., S. P. Yi. 2018. A study on supply chain investment decision-making and coordination in the big data environment. Ann. Oper. Res. 270(1-2): 235–253. https://doi.org/10.1007/s10479-017-2424-4
-
(2018)
Ann. Oper. Res.
, vol.270
, Issue.1-2
, pp. 235-253
-
-
Liu, P.1
Yi, S.P.2
-
43
-
-
84969884848
-
A structured analysis of unstructured big data by leveraging cloud computing
-
Liu, X., P. V. Singh, K. Srinivasan. 2016. A structured analysis of unstructured big data by leveraging cloud computing. Market. Sci. 35(3): 363–388.
-
(2016)
Market. Sci.
, vol.35
, Issue.3
, pp. 363-388
-
-
Liu, X.1
Singh, P.V.2
Srinivasan, K.3
-
44
-
-
85016611460
-
A community perspective on resilience analytics: A visual analysis of community mood
-
López-Cuevas, A., J. Ramírez-Márquez, G. Sanchez-Ante, K. Barker. 2017. A community perspective on resilience analytics: A visual analysis of community mood. Risk Anal. 37(8): 1566–1579.
-
(2017)
Risk Anal.
, vol.37
, Issue.8
, pp. 1566-1579
-
-
López-Cuevas, A.1
Ramírez-Márquez, J.2
Sanchez-Ante, G.3
Barker, K.4
-
45
-
-
84991577410
-
An optimization-based decision-support tool for post-disaster debris operations
-
Lorca, Á., M. Çelik, Ö. Ergun, P. Keskinocak. 2017. An optimization-based decision-support tool for post-disaster debris operations. Prod. Oper. Manag. 26(6): 1076–1091. https://doi.org/10.1111/poms.12643.
-
(2017)
Prod. Oper. Manag.
, vol.26
, Issue.6
, pp. 1076-1091
-
-
Lorca, Á.1
Çelik, M.2
Ergun, Ö.3
Keskinocak, P.4
-
46
-
-
84969791398
-
A video-based automated recommender (VAR) system for garments
-
Lu, S., L. Xiao, M. Ding. 2016. A video-based automated recommender (VAR) system for garments. Market. Sci. 35(3): 484–510.
-
(2016)
Market. Sci.
, vol.35
, Issue.3
, pp. 484-510
-
-
Lu, S.1
Xiao, L.2
Ding, M.3
-
47
-
-
85027926799
-
Traffic flow prediction with big data: A deep learning approach
-
Lv, Y., Y. Duan, W. Kang, Z. Li, F. Wang. 2015. Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2): 865–873.
-
(2015)
IEEE Trans. Intell. Transp. Syst.
, vol.16
, Issue.2
, pp. 865-873
-
-
Lv, Y.1
Duan, Y.2
Kang, W.3
Li, Z.4
Wang, F.5
-
48
-
-
70349976559
-
Forecasting cancellation rates for services booking revenue management using data mining
-
Morales, D. R., J. Wang. 2010. Forecasting cancellation rates for services booking revenue management using data mining. Eur. J. Oper. Res. 202: 554–562.
-
(2010)
Eur. J. Oper. Res.
, vol.202
, pp. 554-562
-
-
Morales, D.R.1
Wang, J.2
-
49
-
-
85017098025
-
Product recall decisions in medical device supply chains: A big data analytic approach to evaluating judgement bias
-
Mukherjee, U. K., K. K. Sinha. 2018. Product recall decisions in medical device supply chains: A big data analytic approach to evaluating judgement bias. Prod. Oper. Manag. 27(10): 1816–1833. https://doi.org/10.1111/poms.12696.
-
(2018)
Prod. Oper. Manag.
, vol.27
, Issue.10
, pp. 1816-1833
-
-
Mukherjee, U.K.1
Sinha, K.K.2
-
50
-
-
85019420467
-
Forecasting for big data: Does suboptimality matter?
-
Nikolopoulos, K., F. Petropoulos. 2018. Forecasting for big data: Does suboptimality matter? Comput. Oper. Res. 98: 322–329. https://doi.org/10.1016/j.cor.2017.05.007.
-
(2018)
Comput. Oper. Res.
, vol.98
, pp. 322-329
-
-
Nikolopoulos, K.1
Petropoulos, F.2
-
51
-
-
84963945196
-
The role of big data in explaining disaster resilience in supply chains for sustainability
-
Papadopoulos, T., A. Gunasekaran, R. Dubey, N. Altay, S. J. Childe, S. Fosso-Wamba. 2017. The role of big data in explaining disaster resilience in supply chains for sustainability. J. Clean. Prod. 142: 1108–1118.
-
(2017)
J. Clean. Prod.
, vol.142
, pp. 1108-1118
-
-
Papadopoulos, T.1
Gunasekaran, A.2
Dubey, R.3
Altay, N.4
Childe, S.J.5
Fosso-Wamba, S.6
-
52
-
-
84970003122
-
Service provisioning problem in cloud and multi-cloud systems
-
Passacantando, M., D. Ardgna, A. Savi. 2016. Service provisioning problem in cloud and multi-cloud systems. INFORMS J. Comput. 28(2): 265–277.
-
(2016)
INFORMS J. Comput.
, vol.28
, Issue.2
, pp. 265-277
-
-
Passacantando, M.1
Ardgna, D.2
Savi, A.3
-
53
-
-
70449597677
-
Evolutionary algorithms for vehicle routing
-
Potvin, J. Y. 2009. Evolutionary algorithms for vehicle routing. INFORMS J. Comput. 21(4): 518–548.
-
(2009)
INFORMS J. Comput.
, vol.21
, Issue.4
, pp. 518-548
-
-
Potvin, J.Y.1
-
54
-
-
84897846761
-
The service revolution and the transformation of marketing science
-
Rust, R. T., M. H. Huang. 2014. The service revolution and the transformation of marketing science. Market. Sci. 33(2): 206–221.
-
(2014)
Market. Sci.
, vol.33
, Issue.2
, pp. 206-221
-
-
Rust, R.T.1
Huang, M.H.2
-
55
-
-
85045201528
-
Temporal big data for tactical sales forecasting in the tire industry
-
Sagaert, Y. R., E. Aghezzaf, N. Kourentzes, B. Desmet. 2018. Temporal big data for tactical sales forecasting in the tire industry. Interfaces 48(2): 121–129. https://doi.org/10.1287/inte.2017.0901.
-
(2018)
Interfaces
, vol.48
, Issue.2
, pp. 121-129
-
-
Sagaert, Y.R.1
Aghezzaf, E.2
Kourentzes, N.3
Desmet, B.4
-
56
-
-
84983438678
-
Customer reviews for demand distribution and sales nowcasting: A big data approach. A big data approach
-
See-To, E. W. K., E. W. T. Ngai. 2018. Customer reviews for demand distribution and sales nowcasting: A big data approach. A big data approach. Ann. Oper. Res. 270(1-2): 415–431. https://doi.org/10.1007/s10479-016-2296-z.
-
(2018)
Ann. Oper. Res.
, vol.270
, Issue.1-2
, pp. 415-431
-
-
See-To, E.W.K.1
Ngai, E.W.T.2
-
57
-
-
85034595691
-
Exploiting big data in logistics risk assessment via Bayesian nonparametrics
-
Shang, Y., D. Dunson, J. S. Song. 2017. Exploiting big data in logistics risk assessment via Bayesian nonparametrics. Oper. Res. 65(6): 1574–1588. https://doi.org/10.1287/opre.2017.1612.
-
(2017)
Oper. Res.
, vol.65
, Issue.6
, pp. 1574-1588
-
-
Shang, Y.1
Dunson, D.2
Song, J.S.3
-
58
-
-
85047021298
-
The new frontier of price optimization
-
Simchi-Levi, D. 2017. The new frontier of price optimization. MIT Sloan Manage. Rev. 59(1): 22–26.
-
(2017)
MIT Sloan Manage. Rev.
, vol.59
, Issue.1
, pp. 22-26
-
-
Simchi-Levi, D.1
-
59
-
-
84959452301
-
Environmental performance evaluation with big data: Theories and methods
-
Song, M. L., R. Fisher, J. Wang, L. Cui. 2018. Environmental performance evaluation with big data: Theories and methods. Ann. Oper. Res. 270(1-2): 459–472. https://doi.org/10.1007/s10479-016-2158-8.
-
(2018)
Ann. Oper. Res.
, vol.270
, Issue.1-2
, pp. 459-472
-
-
Song, M.L.1
Fisher, R.2
Wang, J.3
Cui, L.4
-
60
-
-
2542587466
-
Relationsip-based clustering and visualization for high-dimensional data mining
-
Strehl, A., J. Ghosh. 2003. Relationsip-based clustering and visualization for high-dimensional data mining. INFORMS J. Comput. 15(2): 208–230.
-
(2003)
INFORMS J. Comput.
, vol.15
, Issue.2
, pp. 208-230
-
-
Strehl, A.1
Ghosh, J.2
-
61
-
-
85029167518
-
Efficient and rapid machine learning algorithms for big data and dynamic varying systems
-
Sun, F., G. Huang, Q. M. J. Wu, S. Song, D. C. Wunsch II. 2017. Efficient and rapid machine learning algorithms for big data and dynamic varying systems. IEEE Trans. Syst. Man Cybern. Syst. 47(10): 2625–2626.
-
(2017)
IEEE Trans. Syst. Man Cybern. Syst.
, vol.47
, Issue.10
, pp. 2625-2626
-
-
Sun, F.1
Huang, G.2
Wu, Q.M.J.3
Song, S.4
Wunsch, D.C.5
-
62
-
-
84908563758
-
Toward energy efficient big data gathering in densely distributed sensor networks
-
Takaishi, D., H. Nishiyama, N. Kato, R. Miura. 2014. Toward energy efficient big data gathering in densely distributed sensor networks. IEEE Trans. Emerg. Topics Comput. 2(3): 388–397.
-
(2014)
IEEE Trans. Emerg. Topics Comput.
, vol.2
, Issue.3
, pp. 388-397
-
-
Takaishi, D.1
Nishiyama, H.2
Kato, N.3
Miura, R.4
-
63
-
-
85045206975
-
Lessons learned from a company dealing with big data
-
Tarvin, D. A., L. Sipeki, A. M. Newman, A. S. Hering. 2018. Lessons learned from a company dealing with big data. Interfaces 48(2): 147–155. https://doi.org/10.1287/inte.2017.0890.
-
(2018)
Interfaces
, vol.48
, Issue.2
, pp. 147-155
-
-
Tarvin, D.A.1
Sipeki, L.2
Newman, A.M.3
Hering, A.S.4
-
64
-
-
84947264151
-
Optimization of industrial-scale assemble-to-order systems
-
Van Jaarsveld, W., A. Scheller-Wolf. 2015. Optimization of industrial-scale assemble-to-order systems. INFORMS J. Comput. 27(3): 544–560.
-
(2015)
INFORMS J. Comput.
, vol.27
, Issue.3
, pp. 544-560
-
-
Van Jaarsveld, W.1
Scheller-Wolf, A.2
-
65
-
-
84900796645
-
Data science, predictive analytics and big data: A revolution that will transform supply chain design and management
-
Waller, M. A., S. E. Fawcett. 2013. Data science, predictive analytics and big data: A revolution that will transform supply chain design and management. J. Bus. Log. 34(2): 77–84.
-
(2013)
J. Bus. Log.
, vol.34
, Issue.2
, pp. 77-84
-
-
Waller, M.A.1
Fawcett, S.E.2
-
66
-
-
84929509763
-
How “big data” can make big impact: Findings from a systematic review and a longitudinal case study
-
Wamba, S. F., S. Akter, A. Edwards, G. Chopin, D. Gnanzou. 2015. How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. Int. J. Prod. Econ. 165: 234–246.
-
(2015)
Int. J. Prod. Econ.
, vol.165
, pp. 234-246
-
-
Wamba, S.F.1
Akter, S.2
Edwards, A.3
Chopin, G.4
Gnanzou, D.5
-
67
-
-
85019168583
-
Learning from uncertainty for big data
-
Wang, X., Y. He. 2016. Learning from uncertainty for big data. IEEE Syst. Man Cybern. Mag. 2(2): 26–32.
-
(2016)
IEEE Syst. Man Cybern. Mag.
, vol.2
, Issue.2
, pp. 26-32
-
-
Wang, X.1
He, Y.2
-
68
-
-
84976471936
-
Distribution network design with big data: Model and analysis
-
Wang, G., A. Gunasekaran, E. W. T. Ngai. 2018. Distribution network design with big data: Model and analysis. Ann. Oper. Res. 270(1-2): 539–551. https://doi.org/10.1007/s10479-016-2263-8.
-
(2018)
Ann. Oper. Res.
, vol.270
, Issue.1-2
, pp. 539-551
-
-
Wang, G.1
Gunasekaran, A.2
Ngai, E.W.T.3
-
69
-
-
84890419941
-
Data mining with big data
-
Wu, X., X. Zhu, G. Wu, W. Ding. 2014. Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1): 97–107.
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.1
, pp. 97-107
-
-
Wu, X.1
Zhu, X.2
Wu, G.3
Ding, W.4
-
70
-
-
85016436528
-
Analysis of traffic crashes involving pedestrians using big data: Investigation of contributing factors and identification of hotspots
-
Xie, K., K. Ozbay, A. Kurkcu, H. Yang. 2017. Analysis of traffic crashes involving pedestrians using big data: Investigation of contributing factors and identification of hotspots. Risk Anal. 37(8): 1459–1476.
-
(2017)
Risk Anal.
, vol.37
, Issue.8
, pp. 1459-1476
-
-
Xie, K.1
Ozbay, K.2
Kurkcu, A.3
Yang, H.4
-
71
-
-
85018903177
-
Petuum: A new platform for distributed machine learning on big data
-
Xing, E. P., Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, Y. Yu. 2015. Petuum: A new platform for distributed machine learning on big data. IEEE Trans. Big Data 1(2): 49–67.
-
(2015)
IEEE Trans. Big Data
, vol.1
, Issue.2
, pp. 49-67
-
-
Xing, E.P.1
Ho, Q.2
Dai, W.3
Kim, J.K.4
Wei, J.5
Lee, S.6
Zheng, X.7
Xie, P.8
Kumar, A.9
Yu, Y.10
-
72
-
-
84956868790
-
Pricing personalized bundles: A new approach and an empirical study
-
Xue, Z., Z. Wang, M. Ettl. 2016. Pricing personalized bundles: A new approach and an empirical study. Manuf. Serv. Oper. Manag. 18(1): 51–68.
-
(2016)
Manuf. Serv. Oper. Manag.
, vol.18
, Issue.1
, pp. 51-68
-
-
Xue, Z.1
Wang, Z.2
Ettl, M.3
-
73
-
-
85021332256
-
Efficiency evaluation based on data envelopment analysis in the big data context
-
Zhu, Q., J. Wu, M. Song. 2018. Efficiency evaluation based on data envelopment analysis in the big data context. Comput. Oper. Res. 98: 291–300. https://doi.org/10.1016/j.cor.2017.06.017.
-
(2018)
Comput. Oper. Res.
, vol.98
, pp. 291-300
-
-
Zhu, Q.1
Wu, J.2
Song, M.3
|