메뉴 건너뛰기




Volumn 98, Issue , 2018, Pages 322-329

Forecasting for big data: Does suboptimality matter?

Author keywords

Big data; Forecasting; Optimisation; Retail

Indexed keywords

ECONOMIC AND SOCIAL EFFECTS; FORECASTING;

EID: 85019420467     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cor.2017.05.007     Document Type: Article
Times cited : (40)

References (12)
  • 1
    • 0034288490 scopus 로고    scopus 로고
    • The theta model: a decomposition approach to forecasting
    • Assimakopoulos, V., Nikolopoulos, K., The theta model: a decomposition approach to forecasting. Int. J. Forecast. 16:4 (2000), 521–530.
    • (2000) Int. J. Forecast. , vol.16 , Issue.4 , pp. 521-530
    • Assimakopoulos, V.1    Nikolopoulos, K.2
  • 2
    • 33745943643 scopus 로고    scopus 로고
    • Spyros makridakis: an interview with the international journal of forecasting
    • Fildes, R., Nikolopoulos, K., Spyros makridakis: an interview with the international journal of forecasting. Int. J. Forecast. 22:3 (2006), 625–636.
    • (2006) Int. J. Forecast. , vol.22 , Issue.3 , pp. 625-636
    • Fildes, R.1    Nikolopoulos, K.2
  • 3
    • 84973545775 scopus 로고    scopus 로고
    • Models for optimising the theta method and their relationship to state space models
    • Fioruci, J.A., Pellegrini, T.R., Louzada, F., Petropoulos, F., Koehler, A., Models for optimising the theta method and their relationship to state space models. Int. J. Forecast. 32:4 (2016), 1151–1161.
    • (2016) Int. J. Forecast. , vol.32 , Issue.4 , pp. 1151-1161
    • Fioruci, J.A.1    Pellegrini, T.R.2    Louzada, F.3    Petropoulos, F.4    Koehler, A.5
  • 4
    • 84960378176 scopus 로고    scopus 로고
    • The relationship between model complexity and forecasting performance for computer intelligence optimization in finance
    • Ghandara, A., Michalewicz, Z., Zurbruegge, R., The relationship between model complexity and forecasting performance for computer intelligence optimization in finance. Int. J. Forecast. 32:3 (2016), 598–613.
    • (2016) Int. J. Forecast. , vol.32 , Issue.3 , pp. 598-613
    • Ghandara, A.1    Michalewicz, Z.2    Zurbruegge, R.3
  • 5
    • 0003428336 scopus 로고
    • Applied Nonparametric Regression
    • Cambridge University Press Cambridge
    • Härdle, W., Applied Nonparametric Regression. 1992, Cambridge University Press, Cambridge.
    • (1992)
    • Härdle, W.1
  • 6
    • 0003413187 scopus 로고    scopus 로고
    • Neural Networks: A Comprehensive Foundation
    • Pearson US
    • Haykin, S., Neural Networks: A Comprehensive Foundation. 1998, Pearson, US.
    • (1998)
    • Haykin, S.1
  • 7
    • 67650246505 scopus 로고    scopus 로고
    • Neural Networks and Learning Machines
    • Prentice Hall US
    • Haykin, S., Neural Networks and Learning Machines. 2008, Prentice Hall, US.
    • (2008)
    • Haykin, S.1
  • 8
    • 84890882829 scopus 로고    scopus 로고
    • Introduction to the Math of Neural Networks
    • Heaton Research, Inc
    • Heaton, J., Introduction to the Math of Neural Networks. 2012, Heaton Research, Inc.
    • (2012)
    • Heaton, J.1
  • 9
    • 14844288728 scopus 로고    scopus 로고
    • The M3 competition: statistical tests of the results
    • Koning, A.J., Franses, P.H., Hibon, M., Stekler, H.O., The M3 competition: statistical tests of the results. Int. J. Forecast. 21:3 (2005), 397–409, 10.1016/j.ijforecast.2004.10.003.
    • (2005) Int. J. Forecast. , vol.21 , Issue.3 , pp. 397-409
    • Koning, A.J.1    Franses, P.H.2    Hibon, M.3    Stekler, H.O.4
  • 12
    • 0034288942 scopus 로고    scopus 로고
    • The M3-competition: results, conclusions and implications
    • Makridakis, S., Hibon, M., The M3-competition: results, conclusions and implications. Int. J. Forecast. 16:4 (2000), 451–476.
    • (2000) Int. J. Forecast. , vol.16 , Issue.4 , pp. 451-476
    • Makridakis, S.1    Hibon, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.