-
1
-
-
84926193230
-
A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
-
Xiao, L.; Wang, J.; Hou, R.; Wu, J. A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 2015, 82, 524-549.
-
(2015)
Energy
, vol.82
, pp. 524-549
-
-
Xiao, L.1
Wang, J.2
Hou, R.3
Wu, J.4
-
2
-
-
84870024579
-
A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm
-
Li, H.; Guo, S.; Li, C.; Sun, J. A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowl.-Based Syst. 2012, 37, 378-387.
-
(2012)
Knowl.-Based Syst.
, vol.37
, pp. 378-387
-
-
Li, H.1
Guo, S.2
Li, C.3
Sun, J.4
-
3
-
-
84899129918
-
A hybrid neural network and genetic algorithm based model for short term load forecast
-
Islam, B.; Baharudin, Z.; Raza, Q.; Nallagownden, P. A hybrid neural network and genetic algorithm based model for short term load forecast. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 2667-2673.
-
(2014)
Res. J. Appl. Sci. Eng. Technol.
, vol.7
, pp. 2667-2673
-
-
Islam, B.1
Baharudin, Z.2
Raza, Q.3
Nallagownden, P.4
-
4
-
-
85032346533
-
-
Hindawi Publishing Corporation: Cairo, Egypt.
-
Yang, Y.; Wu, J.; Chen, Y.; Li, C. A New Strategy for Short-Term Load Forecasting; Hindawi Publishing Corporation: Cairo, Egypt, 2013.
-
(2013)
A New Strategy for Short-Term Load Forecasting
-
-
Yang, Y.1
Wu, J.2
Chen, Y.3
Li, C.4
-
5
-
-
84871720465
-
Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter
-
Ko, C.-N.; Lee, C.-M. Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter. Energy 2013, 49, 413-422.
-
(2013)
Energy
, vol.49
, pp. 413-422
-
-
Ko, C.-N.1
Lee, C.-M.2
-
6
-
-
80053572327
-
A methodology for electric power load forecasting
-
Almeshaiei, E.; Soltan, H. A methodology for electric power load forecasting. Alex. Eng. J. 2011, 50, 137-144.
-
(2011)
Alex. Eng. J.
, vol.50
, pp. 137-144
-
-
Almeshaiei, E.1
Soltan, H.2
-
8
-
-
85032362580
-
-
(accessed on 24 February 2017).
-
US Electricity Operating Data. U.S. ELECTRIC SYSTEM OPERATING DATA Available online: https://www.eia.gov/beta/realtime_grid/#/data/ graphs?end=20170402T00&start=20170326T00 (accessed on 24 February 2017).
-
U.S. ELECTRIC SYSTEM OPERATING DATA
-
-
-
9
-
-
84897988175
-
Residential power load forecasting
-
Day, P.; Fabian, M.; Noble, D.; Ruwisch, G.; Spencer, R.; Stevenson, J.; Thoppay, R. Residential power load forecasting. Procedia Comput. Sci. 2014, 28, 457-464.
-
(2014)
Procedia Comput. Sci.
, vol.28
, pp. 457-464
-
-
Day, P.1
Fabian, M.2
Noble, D.3
Ruwisch, G.4
Spencer, R.5
Stevenson, J.6
Thoppay, R.7
-
10
-
-
84899701114
-
Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
-
Fan, C.; Xiao, F.; Wang, S. Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Appl. Energy 2014, 127, 1-10.
-
(2014)
Appl. Energy
, vol.127
, pp. 1-10
-
-
Fan, C.1
Xiao, F.2
Wang, S.3
-
12
-
-
84860814287
-
The Future of the Electric Grid: An Interdisciplinary MIT Study
-
Massachusetts Institute of Technology: Cambridge, MA, USA.
-
Kassakian, J.G.; Schmalensee, R.; Desgroseilliers, G.; Heidel, T.D.; Afridi, K.; Farid, A.M.; Grochow, J.M.; Hogan, W.W.; Jacoby, H.D.; Kirtley, J.L.; et al. The Future of the Electric Grid: An Interdisciplinary MIT Study; Massachusetts Institute of Technology: Cambridge, MA, USA, 2011.
-
(2011)
-
-
Kassakian, J.G.1
Schmalensee, R.2
Desgroseilliers, G.3
Heidel, T.D.4
Afridi, K.5
Farid, A.M.6
Grochow, J.M.7
Hogan, W.W.8
Jacoby, H.D.9
Kirtley, J.L.10
-
13
-
-
85032352476
-
-
(accessed on 24 November 2016).
-
OpenEI. Smart Energy Data: Terni Energy Consumption Profiles Available online: https://data.lab.fiware.org//dataset/b6ac9ad2-7b9e-4247-a785-81a88021995c/resource/3994b4ba-788a-4def-852f-043c71a20084/download/ternienergyconsumptionprofilecustomerindustrial1.csv (accessed on 24 November 2016).
-
Smart Energy Data: Terni Energy Consumption Profiles
-
-
-
14
-
-
0000320366
-
Application of least absolute value parameter estimation based on linear programming to short-term load forecasting
-
Soliman, S.A.; Persaud, S.; El-Nagar, K.; El-Hawary, M.E. Application of least absolute value parameter estimation based on linear programming to short-term load forecasting. Int. J. Electr. Power Energy Syst. 1997, 19, 209-216.
-
(1997)
Int. J. Electr. Power Energy Syst.
, vol.19
, pp. 209-216
-
-
Soliman, S.A.1
Persaud, S.2
El-Nagar, K.3
El-Hawary, M.E.4
-
15
-
-
84889668254
-
Comparison of conventional and modern load forecasting techniques based on artificial intelligence and expert systems
-
Badar, E.; Islam, U. Comparison of conventional and modern load forecasting techniques based on artificial intelligence and expert systems. Int. J. Comput. Sci. Issues 2011, 8, 504-513.
-
(2011)
Int. J. Comput. Sci. Issues
, vol.8
, pp. 504-513
-
-
Badar, E.1
Islam, U.2
-
17
-
-
84890870891
-
Artificial neural network based approach compared with stochastic modelling for electrical load forecasting
-
Cairo, Egypt, 31 August-2 September.
-
Ismail, M.M.; Hassan, M.M. Artificial neural network based approach compared with stochastic modelling for electrical load forecasting. In Proceedings of the 2013 5th International Conference on Modelling, Identification and Control (ICMIC), Cairo, Egypt, 31 August-2 September 2013; pp. 112-118.
-
(2013)
Proceedings of the 2013 5th International Conference on Modelling, Identification and Control (ICMIC)
, pp. 112-118
-
-
Ismail, M.M.1
Hassan, M.M.2
-
18
-
-
67349154089
-
Electric load forecasting methods: Tools for decision making
-
Hahn, H.; Meyer-Nieberg, S.; Pickl, S. Electric load forecasting methods: Tools for decision making. Eur. J. Oper. Res. 2009 , 199, 902-907.
-
(2009)
Eur. J. Oper. Res
, vol.199
, pp. 902-907
-
-
Hahn, H.1
Meyer-Nieberg, S.2
Pickl, S.3
-
19
-
-
9244240793
-
Load forecasting using support vector Machines: A study on EUNITE competition 2001
-
Chen, B.-J.; Chang, M.-W.; Lin, C.-J. Load forecasting using support vector Machines: A study on EUNITE competition 2001. IEEE Trans. Power Syst. 2004, 19, 1821-1830.
-
(2004)
IEEE Trans. Power Syst.
, vol.19
, pp. 1821-1830
-
-
Chen, B.-J.1
Chang, M.-W.2
Lin, C.-J.3
-
20
-
-
84938369531
-
A forecasting model based on time series analysis applied to electrical energy consumption
-
Tepedino, C.; Guarnaccia, C.; Iliev, S.; Popova, S.; Quartieri, J. A forecasting model based on time series analysis applied to electrical energy consumption. Int. J. Math. Model. Methods Appl. Sci. 2015, 9, 432-445.
-
(2015)
Int. J. Math. Model. Methods Appl. Sci.
, vol.9
, pp. 432-445
-
-
Tepedino, C.1
Guarnaccia, C.2
Iliev, S.3
Popova, S.4
Quartieri, J.5
-
22
-
-
84959881698
-
Comparative study of short-term electric load forecasting
-
Langkawi, Malaysia, 27-29 January.
-
Koo, B.G.; Lee, S.W.; Kim, W.; Park, J.H. Comparative study of short-term electric load forecasting. In Proceedings of the 2014 5th International Conference on Intelligent Systems, Modelling and Simulation, Langkawi, Malaysia, 27-29 January 2014; pp. 463-467.
-
(2014)
Proceedings of the 2014 5th International Conference on Intelligent Systems, Modelling and Simulation
, pp. 463-467
-
-
Koo, B.G.1
Lee, S.W.2
Kim, W.3
Park, J.H.4
-
23
-
-
85020889231
-
Performance comparison of short term load forecasting techniques
-
Cheepati, K.R.; Prasad, T.N. Performance comparison of short term load forecasting techniques. Int. J. Grid Distrib. Comput. 2016, 9, 287-302.
-
(2016)
Int. J. Grid Distrib. Comput.
, vol.9
, pp. 287-302
-
-
Cheepati, K.R.1
Prasad, T.N.2
-
24
-
-
79960898986
-
The comparison of fuzzy inference systems and neural network approaches with ANFIS method for fuel consumption data
-
Bursa, Turkey, 7-11 November.
-
Atmaca, H. The comparison of fuzzy inference systems and neural network approaches with ANFIS method for fuel consumption data. In Proceedings of the Second International Conference on Electrical and Electronics Engineering Papers ELECO, Bursa, Turkey, 7-11 November 2001; Volume 6, pp. 1-4.
-
(2001)
Proceedings of the Second International Conference on Electrical and Electronics Engineering Papers ELECO
, vol.6
, pp. 1-4
-
-
Atmaca, H.1
-
26
-
-
84920137471
-
A hybrid model for integrated day-ahead electricity price and load forecasting in smart grid
-
Wu, L.; Shahidehpour, M. A hybrid model for integrated day-ahead electricity price and load forecasting in smart grid. IET Gener. Transm. Distrib. 2014, 8, 1937-1950.
-
(2014)
IET Gener. Transm. Distrib.
, vol.8
, pp. 1937-1950
-
-
Wu, L.1
Shahidehpour, M.2
-
27
-
-
85032371800
-
Probabilistic scenario analysis
-
Yoe, C. Probabilistic scenario analysis. Princ. Risk Anal. 2011 , 399-420.
-
(2011)
Princ. Risk Anal
, pp. 399-420
-
-
Yoe, C.1
-
28
-
-
84937764904
-
Probabilistic solar power forecasting in smart grids using distributed information
-
Bessa, R.J.; Trindade, A.; Silva, C.S.; Miranda, V. Probabilistic solar power forecasting in smart grids using distributed information. Int. J. Electr. Power Energy Syst. 2015, 72, 16-23.
-
(2015)
Int. J. Electr. Power Energy Syst
, vol.72
, pp. 16-23
-
-
Bessa, R.J.1
Trindade, A.2
Silva, C.S.3
Miranda, V.4
-
31
-
-
85032389300
-
Chapter 6 Probabilistic Approaches: Scenario Analysis
-
Analysis, S. Chapter 6 Probabilistic Approaches: Scenario Analysis; Financial Times. pp. 1-61.
-
Financial Times
, pp. 1-61
-
-
Analysis, S.1
-
32
-
-
85012297238
-
Entropy, Shannon's measure of information and Boltzmann's H-theorem
-
Ben-Naim, A. Entropy, Shannon's measure of information and Boltzmann's H-theorem. Entropy 2017, 19, 48.
-
(2017)
Entropy
, vol.19
, pp. 48
-
-
Ben-Naim, A.1
-
33
-
-
0002431740
-
Automatic construction of decision trees from data: A multi-disciplinary survey
-
Sreerama, K.M. Automatic construction of decision trees from data: A multi-disciplinary survey. Data Min. Knowl. Discov. 1998, 2, 345-389.
-
(1998)
Data Min. Knowl. Discov
, vol.2
, pp. 345-389
-
-
Sreerama, K.M.1
-
35
-
-
85032350255
-
-
UF Department of Statistics: Gainesville, FL, USA.
-
UF Department of Statistics. Statistical Tables; UF Department of Statistics: Gainesville, FL, USA, 2002; Volume II, pp. 1-26.
-
(2002)
Statistical Tables
, vol.2
, pp. 1-26
-
-
|