-
3
-
-
0006085632
-
Central limit theorems under weak dependence
-
Bradley, R. C. (1981). Central limit theorems under weak dependence. Journal of Multivariate Analysis, 11(1):1-16.
-
(1981)
Journal of Multivariate Analysis
, vol.11
, Issue.1
, pp. 1-16
-
-
Bradley, R.C.1
-
4
-
-
84951059249
-
Multi-column deep neural networks for offline handwritten Chinese character classification
-
IEEE
-
Cireşan, D. and Meier, U. (2015). Multi-column deep neural networks for offline handwritten chinese character classification. In 2015 International Joint Conference on Neural Networks (IJCNN), pages 1-6. IEEE.
-
(2015)
2015 International Joint Conference on Neural Networks (IJCNN)
, pp. 1-6
-
-
Cireşan, D.1
Meier, U.2
-
6
-
-
84965130201
-
Natural neural networks
-
Desjardins, G., Simonyan, K., Pascanu, R., et al (2015). Natural neural networks. In Advances in Neural Information Processing Systems, pages 2071-2079.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2071-2079
-
-
Desjardins, G.1
Simonyan, K.2
Pascanu, R.3
-
7
-
-
85047021999
-
-
arXiv preprint
-
Dugan, P., Clark, C., LeCun, Y., and Van Parijs, S. (2016). Phase 4: Dcl system using deep learning approaches for land-based or ship-based real-time recognition and localization of marine mammals-distributed processing and big data applications. arXiv preprint arXiv:1605.00982.
-
(2016)
Phase 4: Dcl System Using Deep Learning Approaches for Land-based or Ship-based Real-time Recognition and Localization of Marine Mammals-distributed Processing and Big Data Applications
-
-
Dugan, P.1
Clark, C.2
LeCun, Y.3
Van Parijs, S.4
-
8
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A., Kuprel, B., Novoa, R., Ko, J., Swetter, S., Blau, H., and Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639):115-118.
-
(2017)
Nature
, vol.542
, Issue.7639
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.3
Ko, J.4
Swetter, S.5
Blau, H.6
Thrun, S.7
-
9
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world classification problems
-
Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems. Journal of Machine Learning Research, 15(1):3133-3181.
-
(2014)
Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 3133-3181
-
-
Fernández-Delgado, M.1
Cernadas, E.2
Barro, S.3
Amorim, D.4
-
10
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
Graves, A., Mohamed, A., and Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In IEEE International conference on acoustics, speech and signal processing (ICASSP), pages 6645-6649.
-
(2013)
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 6645-6649
-
-
Graves, A.1
Mohamed, A.2
Hinton, G.3
-
11
-
-
71249112130
-
Offline handwriting recognition with multidimensional recurrent neural networks
-
Graves, A. and Schmidhuber, J. (2009). Offline handwriting recognition with multidimensional recurrent neural networks. In Advances in neural information processing systems, pages 545-552.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 545-552
-
-
Graves, A.1
Schmidhuber, J.2
-
12
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., et al (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22):2402-2410.
-
(2016)
JAMA
, vol.316
, Issue.22
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
Stumpe, M.C.4
Wu, D.5
Narayanaswamy, A.6
Venugopalan, S.7
Widner, K.8
Madams, T.9
Cuadros, J.10
-
13
-
-
84958589374
-
Deep residual learning for image recognition
-
He, K., Zhang, X., Ren, S., and Sun, J. (2015a). Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
-
(2015)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
14
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
He, K., Zhang, X., Ren, S., and Sun, J. (2015b). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages 1026-1034.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
84861888327
-
An improvement of the berry-esseen inequality with applications to poisson and mixed poisson random sums
-
Korolev, V. and Shevtsova, I. (2012). An improvement of the Berry-Esseen inequality with applications to Poisson and mixed Poisson random sums. Scandinavian Actuarial Journal, 2012(2):81-105.
-
(2012)
Scandinavian Actuarial Journal
, vol.2012
, Issue.2
, pp. 81-105
-
-
Korolev, V.1
Shevtsova, I.2
-
19
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, pages 1097-1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
20
-
-
0002263996
-
Convolutional networks for images, speech, and time series
-
LeCun, Y. and Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10):1995.
-
(1995)
The Handbook of Brain Theory and Neural Networks
, vol.3361
, Issue.10
, pp. 1995
-
-
LeCun, Y.1
Bengio, Y.2
-
21
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436-444.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
22
-
-
84970007010
-
Fifty years of pulsar candidate selection: From simple filters to a new principled real-time classification approach
-
Lyon, R., Stappers, B., Cooper, S., Brooke, J., and Knowles, J. (2016). Fifty years of pulsar candidate selection: From simple filters to a new principled real-time classification approach. Monthly Notices of the Royal Astronomical Society, 459(1):1104-1123.
-
(2016)
Monthly Notices of the Royal Astronomical Society
, vol.459
, Issue.1
, pp. 1104-1123
-
-
Lyon, R.1
Stappers, B.2
Cooper, S.3
Brooke, J.4
Knowles, J.5
-
23
-
-
84987943069
-
DeepTox: Toxicity prediction using deep learning
-
Mayr, A., Klambauer, G., Unterthiner, T., and Hochreiter, S. (2016). DeepTox: Toxicity prediction using deep learning. Frontiers in Environmental Science, 3:80.
-
(2016)
Frontiers in Environmental Science
, vol.3
, pp. 80
-
-
Mayr, A.1
Klambauer, G.2
Unterthiner, T.3
Hochreiter, S.4
-
24
-
-
84959112739
-
-
arXiv preprint
-
Sak, H., Senior, A., Rao, K., and Beaufays, F. (2015). Fast and accurate recurrent neural network acoustic models for speech recognition. arXiv preprint arXiv:1507.06947.
-
(2015)
Fast and Accurate Recurrent Neural Network Acoustic Models for Speech Recognition
-
-
Sak, H.1
Senior, A.2
Rao, K.3
Beaufays, F.4
-
25
-
-
85017457992
-
Weight normalization: A simple reparameterization to accelerate training of deep neural networks
-
Salimans, T. and Kingma, D. P. (2016). Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In Advances in Neural Information Processing Systems, pages 901-909.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 901-909
-
-
Salimans, T.1
Kingma, D.P.2
-
26
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61:85-117.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
27
-
-
84963949906
-
Mastering the game of go with deep neural networks and tree search
-
Silver, D., Huang, A., Maddison, C., et al (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489.
-
(2016)
Nature
, vol.529
, Issue.7587
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.3
-
28
-
-
84965164720
-
Training very deep networks
-
Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Training very deep networks. In Advances in Neural Information Processing Systems, pages 2377-2385.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2377-2385
-
-
Srivastava, R.K.1
Greff, K.2
Schmidhuber, J.3
-
29
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems, pages 3104-3112.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3104-3112
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
30
-
-
84989186822
-
Are random forests truly the best classifiers?
-
Wainberg, M., Alipanahi, B., and Frey, B. J. (2016). Are random forests truly the best classifiers? Journal of Machine Learning Research, 17(110):1-5.
-
(2016)
Journal of Machine Learning Research
, vol.17
, Issue.110
, pp. 1-5
-
-
Wainberg, M.1
Alipanahi, B.2
Frey, B.J.3
|