메뉴 건너뛰기




Volumn 61, Issue , 2016, Pages 87-96

Predicting colorectal surgical complications using heterogeneous clinical data and kernel methods

Author keywords

Clinical decision support; Colorectal cancer; Electronic health records; Feature selection; Heterogeneous clinical data; Kernel methods

Indexed keywords

ARTIFICIAL INTELLIGENCE; BLOOD; DECISION SUPPORT SYSTEMS; DISEASES; FEATURE EXTRACTION; FORECASTING; LEARNING SYSTEMS; RECORDS MANAGEMENT; RISK ASSESSMENT; SURGERY;

EID: 84962333241     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2016.03.008     Document Type: Article
Times cited : (57)

References (45)
  • 3
    • 84892899253 scopus 로고    scopus 로고
    • Systematic review of methods to predict and detect anastomotic leakage in colorectal surgery
    • Hirst N., Tiernan J., Millner P., Jayne D. Systematic review of methods to predict and detect anastomotic leakage in colorectal surgery. Colorectal Dis. 2014, 16(2):95-109.
    • (2014) Colorectal Dis. , vol.16 , Issue.2 , pp. 95-109
    • Hirst, N.1    Tiernan, J.2    Millner, P.3    Jayne, D.4
  • 4
    • 40049084764 scopus 로고    scopus 로고
    • Fast-track colorectal surgery
    • Kehlet H. Fast-track colorectal surgery. Lancet 2008, 371(9615):791-793.
    • (2008) Lancet , vol.371 , Issue.9615 , pp. 791-793
    • Kehlet, H.1
  • 6
    • 84861235431 scopus 로고    scopus 로고
    • Mining electronic health records: towards better research applications and clinical care
    • Jensen P.B., Jensen L.J., Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 2015, 13(6):395-405.
    • (2015) Nat. Rev. Genet. , vol.13 , Issue.6 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 7
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gönen M., Alpaydin E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 2011, 12:2211-2268.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydin, E.2
  • 12
    • 0345120047 scopus 로고    scopus 로고
    • Composite kernels for hypertext categorisation
    • ICML
    • T. Joachims, N. Cristianini, J. Shawe-Taylor, Composite kernels for hypertext categorisation, in: ICML, vol. 1, 2001, pp. 250-257.
    • (2001) , vol.1 , pp. 250-257
    • Joachims, T.1    Cristianini, N.2    Shawe-Taylor, J.3
  • 17
    • 84879040097 scopus 로고    scopus 로고
    • Automatic diagnosis of pathological myopia from heterogeneous biomedical data
    • Zhang Z., Xu Y., Liu J., Wong D.W.K., Kwoh C.K., et al. Automatic diagnosis of pathological myopia from heterogeneous biomedical data. PLOS ONE 2013, 8(6):e65736.
    • (2013) PLOS ONE , vol.8 , Issue.6 , pp. e65736
    • Zhang, Z.1    Xu, Y.2    Liu, J.3    Wong, D.W.K.4    Kwoh, C.K.5
  • 18
    • 80051781186 scopus 로고    scopus 로고
    • Characterization of groups using composite kernels and multi-source fmri analysis data: application to schizophrenia
    • Castro E., Martínez-Ramón M., Pearlson G., Sui J., Calhoun V.D. Characterization of groups using composite kernels and multi-source fmri analysis data: application to schizophrenia. Neuroimage 2011, 58(2):526-536.
    • (2011) Neuroimage , vol.58 , Issue.2 , pp. 526-536
    • Castro, E.1    Martínez-Ramón, M.2    Pearlson, G.3    Sui, J.4    Calhoun, V.D.5
  • 22
    • 84924521437 scopus 로고    scopus 로고
    • Data-driven approach for assessing utility of medical tests using electronic medical records
    • Skrøvseth S.O., Augestad K.M., Ebadollahi S. Data-driven approach for assessing utility of medical tests using electronic medical records. J. Biomed. Inform. 2015, 53:270-276.
    • (2015) J. Biomed. Inform. , vol.53 , pp. 270-276
    • Skrøvseth, S.O.1    Augestad, K.M.2    Ebadollahi, S.3
  • 25
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Platt J., et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classifiers 1999, 10(3):61-74.
    • (1999) Adv. Large Margin Classifiers , vol.10 , Issue.3 , pp. 61-74
    • Platt, J.1
  • 28
    • 67549113661 scopus 로고    scopus 로고
    • A framework for multiple kernel support vector regression and its applications to sirna efficacy prediction
    • Qiu S., Lane T. A framework for multiple kernel support vector regression and its applications to sirna efficacy prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2009, 6(2):190-199.
    • (2009) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.6 , Issue.2 , pp. 190-199
    • Qiu, S.1    Lane, T.2
  • 30
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46(1):389-422.
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 31
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 32
    • 33745891586 scopus 로고    scopus 로고
    • Springer, Heidelberg, I. Guyon, S. Gunn, M. Nikravesh, L.A. Zadeh (Eds.)
    • Feature Extraction: Foundations and Applications 2006, Springer, Heidelberg. I. Guyon, S. Gunn, M. Nikravesh, L.A. Zadeh (Eds.).
    • (2006) Feature Extraction: Foundations and Applications
  • 33
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using svm based criteria
    • Rakotomamonjy A. Variable selection using svm based criteria. J. Mach. Learn. Res. 2003, 3:1357-1370.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 34
    • 34250697451 scopus 로고    scopus 로고
    • Learning with kernels
    • Scholkopf B., Smola A.J. Learning with kernels. MIT Press 2002, 11:110-146.
    • (2002) MIT Press , vol.11 , pp. 110-146
    • Scholkopf, B.1    Smola, A.J.2
  • 35
    • 45549117987 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • Salton G., Buckley C. Term-weighting approaches in automatic text retrieval. Inform. Process. Manag. 1988, 24(5):513-523.
    • (1988) Inform. Process. Manag. , vol.24 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 37
  • 39
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (roc) curve
    • Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology 1982, 143(1):29-36.
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 40
    • 84951601829 scopus 로고
    • A generalized wilcoxon test for comparing arbitrarily singly-censored samples
    • Gehan E.A. A generalized wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 1965, 52(1-2):203-223.
    • (1965) Biometrika , vol.52 , Issue.1-2 , pp. 203-223
    • Gehan, E.A.1
  • 41
    • 84880233866 scopus 로고    scopus 로고
    • Granger causality analysis in irregular time series
    • SIAM
    • Bahadori M.T., Liu Y. Granger causality analysis in irregular time series. SDM 2012, 660-671. SIAM.
    • (2012) SDM , pp. 660-671
    • Bahadori, M.T.1    Liu, Y.2
  • 42
    • 84901192455 scopus 로고    scopus 로고
    • Abnormal vital signs are common after bowel resection and do not predict anastomotic leak
    • Erb L., Hyman N.H., Osler T. Abnormal vital signs are common after bowel resection and do not predict anastomotic leak. J. Am. Coll. Surg. 2014, 218(6):1195-1199.
    • (2014) J. Am. Coll. Surg. , vol.218 , Issue.6 , pp. 1195-1199
    • Erb, L.1    Hyman, N.H.2    Osler, T.3
  • 43
    • 84902994799 scopus 로고    scopus 로고
    • Do normal clinical signs and laboratory tests exclude anastomotic leakage?
    • Wu Z., Freek D., Lange J. Do normal clinical signs and laboratory tests exclude anastomotic leakage?. J. Am. Coll. Surg. 2014, 219(1):164.
    • (2014) J. Am. Coll. Surg. , vol.219 , Issue.1 , pp. 164
    • Wu, Z.1    Freek, D.2    Lange, J.3
  • 45
    • 84952631584 scopus 로고    scopus 로고
    • Prediction impact curve is a new measure integrating intervention effects in the evaluation of risk models
    • Campbell W., Ganna A., Ingelsson E., Janssens A.C.J. Prediction impact curve is a new measure integrating intervention effects in the evaluation of risk models. J. Clin. Epidemiol. 2016, 69:89-95.
    • (2016) J. Clin. Epidemiol. , vol.69 , pp. 89-95
    • Campbell, W.1    Ganna, A.2    Ingelsson, E.3    Janssens, A.C.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.