-
2
-
-
84882397296
-
Anastomotic leakage as an outcome measure for quality of colorectal cancer surgery
-
Snijders H., Henneman D., van Leersum N., Berge M.T., Fiocco M., Karsten T., Havenga K., Wiggers T., Dekker J., Tollenaar R., Wouters M. Anastomotic leakage as an outcome measure for quality of colorectal cancer surgery. BMJ Qual. Saf. 2013, 22(9):759-767.
-
(2013)
BMJ Qual. Saf.
, vol.22
, Issue.9
, pp. 759-767
-
-
Snijders, H.1
Henneman, D.2
van Leersum, N.3
Berge, M.T.4
Fiocco, M.5
Karsten, T.6
Havenga, K.7
Wiggers, T.8
Dekker, J.9
Tollenaar, R.10
Wouters, M.11
-
3
-
-
84892899253
-
Systematic review of methods to predict and detect anastomotic leakage in colorectal surgery
-
Hirst N., Tiernan J., Millner P., Jayne D. Systematic review of methods to predict and detect anastomotic leakage in colorectal surgery. Colorectal Dis. 2014, 16(2):95-109.
-
(2014)
Colorectal Dis.
, vol.16
, Issue.2
, pp. 95-109
-
-
Hirst, N.1
Tiernan, J.2
Millner, P.3
Jayne, D.4
-
4
-
-
40049084764
-
Fast-track colorectal surgery
-
Kehlet H. Fast-track colorectal surgery. Lancet 2008, 371(9615):791-793.
-
(2008)
Lancet
, vol.371
, Issue.9615
, pp. 791-793
-
-
Kehlet, H.1
-
5
-
-
63649102942
-
Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery
-
Karliczek A., Harlaar N., Zeebregts C., Wiggers T., Baas P., van Dam G. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int. J. Colorectal Dis. 2009, 24(5):569-576.
-
(2009)
Int. J. Colorectal Dis.
, vol.24
, Issue.5
, pp. 569-576
-
-
Karliczek, A.1
Harlaar, N.2
Zeebregts, C.3
Wiggers, T.4
Baas, P.5
van Dam, G.6
-
6
-
-
84861235431
-
Mining electronic health records: towards better research applications and clinical care
-
Jensen P.B., Jensen L.J., Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 2015, 13(6):395-405.
-
(2015)
Nat. Rev. Genet.
, vol.13
, Issue.6
, pp. 395-405
-
-
Jensen, P.B.1
Jensen, L.J.2
Brunak, S.3
-
7
-
-
80052213499
-
Multiple kernel learning algorithms
-
Gönen M., Alpaydin E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 2011, 12:2211-2268.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2211-2268
-
-
Gönen, M.1
Alpaydin, E.2
-
8
-
-
33745776113
-
Large scale multiple kernel learning
-
Sonnenburg S., Rätsch G., Schäfer C., Schölkopf B. Large scale multiple kernel learning. J. Mach. Learn. Res. 2006, 7:1531-1565.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Rätsch, G.2
Schäfer, C.3
Schölkopf, B.4
-
9
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet G.R., Cristianini N., Bartlett P., Ghaoui L.E., Jordan M.I. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 2004, 5:27-72.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
10
-
-
14344252374
-
Multiple kernel learning, conic duality, and the smo algorithm
-
ACM
-
Bach F.R., Lanckriet G.R., Jordan M.I. Multiple kernel learning, conic duality, and the smo algorithm. Proceedings of the Twenty-first International Conference on Machine Learning 2004, 6. ACM.
-
(2004)
Proceedings of the Twenty-first International Conference on Machine Learning
, pp. 6
-
-
Bach, F.R.1
Lanckriet, G.R.2
Jordan, M.I.3
-
11
-
-
31144448472
-
Composite kernels for hyperspectral image classification
-
Camps-Valls G., Gomez-Chova L., Muñoz-Marí J., Vila-Francés J., Calpe-Maravilla J. Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2006, 3(1):93-97.
-
(2006)
IEEE Geosci. Remote Sens. Lett.
, vol.3
, Issue.1
, pp. 93-97
-
-
Camps-Valls, G.1
Gomez-Chova, L.2
Muñoz-Marí, J.3
Vila-Francés, J.4
Calpe-Maravilla, J.5
-
12
-
-
0345120047
-
Composite kernels for hypertext categorisation
-
ICML
-
T. Joachims, N. Cristianini, J. Shawe-Taylor, Composite kernels for hypertext categorisation, in: ICML, vol. 1, 2001, pp. 250-257.
-
(2001)
, vol.1
, pp. 250-257
-
-
Joachims, T.1
Cristianini, N.2
Shawe-Taylor, J.3
-
13
-
-
34147187067
-
Support vector machines for nonlinear kernel arma system identification
-
Martínez-Ramón M., Rojo-Álvarez J.L., Camps-Valls G., Muñoz-Marí J., Navia-Vázquez Á., Soria-Olivas E., Figueiras-Vidal A.R. Support vector machines for nonlinear kernel arma system identification. IEEE Trans. Neural Netw. 2006, 17(6):1617-1622.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.6
, pp. 1617-1622
-
-
Martínez-Ramón, M.1
Rojo-Álvarez, J.L.2
Camps-Valls, G.3
Muñoz-Marí, J.4
Navia-Vázquez, Á.5
Soria-Olivas, E.6
Figueiras-Vidal, A.R.7
-
14
-
-
8844263749
-
A statistical framework for genomic data fusion
-
Lanckriet G.R., De Bie T., Cristianini N., Jordan M.I., Noble W.S. A statistical framework for genomic data fusion. Bioinformatics 2004, 20(16):2626-2635.
-
(2004)
Bioinformatics
, vol.20
, Issue.16
, pp. 2626-2635
-
-
Lanckriet, G.R.1
De Bie, T.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
15
-
-
65449137150
-
Heterogeneous data fusion for alzheimer's disease study
-
ACM
-
Ye J., Chen K., Wu T., Li J., Zhao Z., Patel R., et al. Heterogeneous data fusion for alzheimer's disease study. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2008, 1025-1033. ACM.
-
(2008)
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 1025-1033
-
-
Ye, J.1
Chen, K.2
Wu, T.3
Li, J.4
Zhao, Z.5
Patel, R.6
-
17
-
-
84879040097
-
Automatic diagnosis of pathological myopia from heterogeneous biomedical data
-
Zhang Z., Xu Y., Liu J., Wong D.W.K., Kwoh C.K., et al. Automatic diagnosis of pathological myopia from heterogeneous biomedical data. PLOS ONE 2013, 8(6):e65736.
-
(2013)
PLOS ONE
, vol.8
, Issue.6
, pp. e65736
-
-
Zhang, Z.1
Xu, Y.2
Liu, J.3
Wong, D.W.K.4
Kwoh, C.K.5
-
18
-
-
80051781186
-
Characterization of groups using composite kernels and multi-source fmri analysis data: application to schizophrenia
-
Castro E., Martínez-Ramón M., Pearlson G., Sui J., Calhoun V.D. Characterization of groups using composite kernels and multi-source fmri analysis data: application to schizophrenia. Neuroimage 2011, 58(2):526-536.
-
(2011)
Neuroimage
, vol.58
, Issue.2
, pp. 526-536
-
-
Castro, E.1
Martínez-Ramón, M.2
Pearlson, G.3
Sui, J.4
Calhoun, V.D.5
-
19
-
-
17444438778
-
New support vector algorithms
-
Schölkopf B., Smola A., Williamson R., Bartlett P. New support vector algorithms. Neural Comput. 2000, 12(5):1207-1245.
-
(2000)
Neural Comput.
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.3
Bartlett, P.4
-
20
-
-
84906861412
-
Bootstrap resampling feature selection and support vector machine for early detection of anastomosis leakage
-
C. Soguero-Ruiz, K. Hindberg, J.L. Rojo-Alvarez, S.O. Skrøvseth, F. Godtliebsen, K. Mortensen, A. Revhaug, R.-O. Lindsetmo, I. Mora-Jimenez, K.M. Augestad, et al., Bootstrap resampling feature selection and support vector machine for early detection of anastomosis leakage, in: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2014, pp. 577-580.
-
(2014)
IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)
, pp. 577-580
-
-
Soguero-Ruiz, C.1
Hindberg, K.2
Rojo-Alvarez, J.L.3
Skrøvseth, S.O.4
Godtliebsen, F.5
Mortensen, K.6
Revhaug, A.7
Lindsetmo, R.-O.8
Mora-Jimenez, I.9
Augestad, K.M.10
-
21
-
-
84962331618
-
Support vector feature selection for early detection of anastomosis leakage from bag-of-words in electronic health records
-
Soguero-Ruiz C., Hindberg K., Rojo-Alvarez J.L., Skrvseth S.O., Godtliebsen F., Mortensen K., Revhaug A., Lindsetmo R., Augestad K.M., Jenssen R. Support vector feature selection for early detection of anastomosis leakage from bag-of-words in electronic health records. IEEE J. Biomed. Health Inform. 2014, PP(99).
-
(2014)
IEEE J. Biomed. Health Inform.
, vol.PP
, Issue.99
-
-
Soguero-Ruiz, C.1
Hindberg, K.2
Rojo-Alvarez, J.L.3
Skrvseth, S.O.4
Godtliebsen, F.5
Mortensen, K.6
Revhaug, A.7
Lindsetmo, R.8
Augestad, K.M.9
Jenssen, R.10
-
22
-
-
84924521437
-
Data-driven approach for assessing utility of medical tests using electronic medical records
-
Skrøvseth S.O., Augestad K.M., Ebadollahi S. Data-driven approach for assessing utility of medical tests using electronic medical records. J. Biomed. Inform. 2015, 53:270-276.
-
(2015)
J. Biomed. Inform.
, vol.53
, pp. 270-276
-
-
Skrøvseth, S.O.1
Augestad, K.M.2
Ebadollahi, S.3
-
25
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
Platt J., et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classifiers 1999, 10(3):61-74.
-
(1999)
Adv. Large Margin Classifiers
, vol.10
, Issue.3
, pp. 61-74
-
-
Platt, J.1
-
28
-
-
67549113661
-
A framework for multiple kernel support vector regression and its applications to sirna efficacy prediction
-
Qiu S., Lane T. A framework for multiple kernel support vector regression and its applications to sirna efficacy prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2009, 6(2):190-199.
-
(2009)
IEEE/ACM Trans. Comput. Biol. Bioinform.
, vol.6
, Issue.2
, pp. 190-199
-
-
Qiu, S.1
Lane, T.2
-
29
-
-
57249084590
-
Simplemkl
-
Rakotomamonjy A., Bach F., Canu S., Grandvalet Y. Simplemkl. J. Mach. Learn. Res. 2008, 9:2491-2521.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
30
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46(1):389-422.
-
(2002)
Mach. Learn.
, vol.46
, Issue.1
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
31
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., John G. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
-
(1997)
Artif. Intell.
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
32
-
-
33745891586
-
-
Springer, Heidelberg, I. Guyon, S. Gunn, M. Nikravesh, L.A. Zadeh (Eds.)
-
Feature Extraction: Foundations and Applications 2006, Springer, Heidelberg. I. Guyon, S. Gunn, M. Nikravesh, L.A. Zadeh (Eds.).
-
(2006)
Feature Extraction: Foundations and Applications
-
-
-
33
-
-
84890447445
-
Variable selection using svm based criteria
-
Rakotomamonjy A. Variable selection using svm based criteria. J. Mach. Learn. Res. 2003, 3:1357-1370.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1357-1370
-
-
Rakotomamonjy, A.1
-
34
-
-
34250697451
-
Learning with kernels
-
Scholkopf B., Smola A.J. Learning with kernels. MIT Press 2002, 11:110-146.
-
(2002)
MIT Press
, vol.11
, pp. 110-146
-
-
Scholkopf, B.1
Smola, A.J.2
-
35
-
-
45549117987
-
Term-weighting approaches in automatic text retrieval
-
Salton G., Buckley C. Term-weighting approaches in automatic text retrieval. Inform. Process. Manag. 1988, 24(5):513-523.
-
(1988)
Inform. Process. Manag.
, vol.24
, Issue.5
, pp. 513-523
-
-
Salton, G.1
Buckley, C.2
-
36
-
-
0034960264
-
Missing value estimation methods for dna microarrays
-
Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R., Botstein D., Altman R.B. Missing value estimation methods for dna microarrays. Bioinformatics 2001, 17(6):520-525.
-
(2001)
Bioinformatics
, vol.17
, Issue.6
, pp. 520-525
-
-
Troyanskaya, O.1
Cantor, M.2
Sherlock, G.3
Brown, P.4
Hastie, T.5
Tibshirani, R.6
Botstein, D.7
Altman, R.B.8
-
38
-
-
61549114384
-
Svms modeling for highly imbalanced classification
-
Tang Y., Zhang Y.-Q., Chawla N.V., Krasser S. Svms modeling for highly imbalanced classification. IEEE Trans. Syst. Man Cybern. Syst. 2009, 39(1):281-288.
-
(2009)
IEEE Trans. Syst. Man Cybern. Syst.
, vol.39
, Issue.1
, pp. 281-288
-
-
Tang, Y.1
Zhang, Y.-Q.2
Chawla, N.V.3
Krasser, S.4
-
39
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (roc) curve
-
Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology 1982, 143(1):29-36.
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
40
-
-
84951601829
-
A generalized wilcoxon test for comparing arbitrarily singly-censored samples
-
Gehan E.A. A generalized wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 1965, 52(1-2):203-223.
-
(1965)
Biometrika
, vol.52
, Issue.1-2
, pp. 203-223
-
-
Gehan, E.A.1
-
41
-
-
84880233866
-
Granger causality analysis in irregular time series
-
SIAM
-
Bahadori M.T., Liu Y. Granger causality analysis in irregular time series. SDM 2012, 660-671. SIAM.
-
(2012)
SDM
, pp. 660-671
-
-
Bahadori, M.T.1
Liu, Y.2
-
42
-
-
84901192455
-
Abnormal vital signs are common after bowel resection and do not predict anastomotic leak
-
Erb L., Hyman N.H., Osler T. Abnormal vital signs are common after bowel resection and do not predict anastomotic leak. J. Am. Coll. Surg. 2014, 218(6):1195-1199.
-
(2014)
J. Am. Coll. Surg.
, vol.218
, Issue.6
, pp. 1195-1199
-
-
Erb, L.1
Hyman, N.H.2
Osler, T.3
-
43
-
-
84902994799
-
Do normal clinical signs and laboratory tests exclude anastomotic leakage?
-
Wu Z., Freek D., Lange J. Do normal clinical signs and laboratory tests exclude anastomotic leakage?. J. Am. Coll. Surg. 2014, 219(1):164.
-
(2014)
J. Am. Coll. Surg.
, vol.219
, Issue.1
, pp. 164
-
-
Wu, Z.1
Freek, D.2
Lange, J.3
-
44
-
-
60849137206
-
Improved diagnosis and treatment of anastomotic leakage after colorectal surgery
-
den Dulk M., Noter S.L., Hendriks E.R., Brouwers M.A., van der Vlies C.H., et al. Improved diagnosis and treatment of anastomotic leakage after colorectal surgery. Eur. J. Surg. Oncol. 2009, 35(4):420-426.
-
(2009)
Eur. J. Surg. Oncol.
, vol.35
, Issue.4
, pp. 420-426
-
-
den Dulk, M.1
Noter, S.L.2
Hendriks, E.R.3
Brouwers, M.A.4
van der Vlies, C.H.5
-
45
-
-
84952631584
-
Prediction impact curve is a new measure integrating intervention effects in the evaluation of risk models
-
Campbell W., Ganna A., Ingelsson E., Janssens A.C.J. Prediction impact curve is a new measure integrating intervention effects in the evaluation of risk models. J. Clin. Epidemiol. 2016, 69:89-95.
-
(2016)
J. Clin. Epidemiol.
, vol.69
, pp. 89-95
-
-
Campbell, W.1
Ganna, A.2
Ingelsson, E.3
Janssens, A.C.J.4
|