-
2
-
-
84973890960
-
Vqa: Visual question answering
-
1, 2
-
S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, and L. Zitnick. Vqa: Visual question answering. In ICCV, 2015. 1, 2
-
(2015)
ICCV
-
-
Antol, S.1
Agrawal, A.2
Lu, J.3
Mitchell, M.4
Batra, D.5
Zitnick, L.6
-
4
-
-
84973882857
-
Predicting deep zero-shot convolutional neural networks using textual descriptions
-
J. Ba, K. Swersky, S. Fidler, and R. Salakhutdinov. Predicting deep zero-shot convolutional neural networks using textual descriptions. In ICCV, 2015. 1
-
(2015)
ICCV
, pp. 1
-
-
Ba, J.1
Swersky, K.2
Fidler, S.3
Salakhutdinov, R.4
-
6
-
-
0035741485
-
A simple algorithm for identifying negated findings and diseases in discharge summaries
-
oct, 3
-
W.W. Chapman, W. Bridewell, P. Hanbury, G. F. Cooper, and B. G. Buchanan. A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics, 34(5):301-310, oct 2001. 3
-
(2001)
Journal of Biomedical Informatics
, vol.34
, Issue.5
, pp. 301-310
-
-
Chapman, W.W.1
Bridewell, W.2
Hanbury, P.3
Cooper, G.F.4
Buchanan, B.G.5
-
9
-
-
84963729804
-
Preparing a collection of radiology examinations for distribution and retrieval
-
July, 4
-
D. Demner-Fushman, M. D. Kohli, M. B. Rosenman, S. E. Shooshan, L. Rodriguez, S. Antani, G. R. Thoma, and C. J. McDonald. Preparing a collection of radiology examinations for distribution and retrieval. Journal of the American Medical Informatics Association, 23(2):304-310, July 2015. 4
-
(2015)
Journal of the American Medical Informatics Association
, vol.23
, Issue.2
, pp. 304-310
-
-
Demner-Fushman, D.1
Kohli, M.D.2
Rosenman, M.B.3
Shooshan, S.E.4
Rodriguez, L.5
Antani, S.6
Thoma, G.R.7
McDonald, C.J.8
-
10
-
-
72249100259
-
Imagenet: A large-scale hierarchical image database
-
IEEE, 5
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, pages 248-255. IEEE, 2009. 5
-
(2009)
Computer Vision and Pattern Recognition
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
11
-
-
84968542337
-
Automatic detection of cerebral microbleeds from mr images via 3d convolutional neural networks
-
2
-
Q. Dou, H. Chen, L. Yu, L. Zhao, J. Qin, D. Wang, V. Mok, L. Shi, and P. Heng. Automatic detection of cerebral microbleeds from mr images via 3d convolutional neural networks. IEEE Trans. Medical Imaging, 35(5):1182-1195, 2016. 2
-
(2016)
IEEE Trans. Medical Imaging
, vol.35
, Issue.5
, pp. 1182-1195
-
-
Dou, Q.1
Chen, H.2
Yu, L.3
Zhao, L.4
Qin, J.5
Wang, D.6
Mok, V.7
Shi, L.8
Heng, P.9
-
12
-
-
84952343030
-
Weldon: Weakly supervised learning of deep convolutional neural networks
-
5
-
T. Durand, N. Thome, and M. Cord. Weldon: Weakly supervised learning of deep convolutional neural networks. IEEE CVPR, 2016. 5
-
(2016)
IEEE CVPR
-
-
Durand, T.1
Thome, N.2
Cord, M.3
-
13
-
-
84921069139
-
The pascal visual object classes challenge: A retrospective
-
1, 2, 7
-
M. Everingham, S. M. A. Eslami, L. J. Van Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision, pages 111(1): 98-136, 2015. 1, 2, 7
-
(2015)
International Journal of Computer Vision
, vol.111
, Issue.1
, pp. 98-136
-
-
Everingham, M.1
Eslami, S.M.A.2
Van Gool, L.J.3
Williams, C.4
Winn, J.5
Zisserman, A.6
-
14
-
-
84968661778
-
Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
-
2
-
H. Greenspan, B. van Ginneken, and R. M. Summers. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Medical Imaging, 35(5):1153-1159, 2016. 2
-
(2016)
IEEE Trans. Medical Imaging
, vol.35
, Issue.5
, pp. 1153-1159
-
-
Greenspan, H.1
Van Ginneken, B.2
Summers, R.M.3
-
16
-
-
84996504008
-
Hemis: Hetero-modal image segmentation
-
Springer, 2
-
M. Havaei, N. Guizard, N. Chapados, and Y. Bengio. Hemis: Hetero-modal image segmentation. In MICCAI, pages (2): 469-477. Springer, 2016. 2
-
(2016)
MICCAI
, vol.2
, pp. 469-477
-
-
Havaei, M.1
Guizard, N.2
Chapados, N.3
Bengio, Y.4
-
17
-
-
84958589374
-
-
4, 7
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015. 5, 7
-
(2015)
Deep Residual Learning for Image Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
84996602286
-
Self-transfer learning for weakly supervised lesion localization
-
5
-
S. Hwang and H.-E. Kim. Self-transfer learning for weakly supervised lesion localization. In MICCAI, pages (2): 239-246, 2015. 5
-
(2015)
MICCAI, Pages
, vol.2
, pp. 239-246
-
-
Hwang, S.1
Kim, H.-E.2
-
19
-
-
84944252278
-
Two public chest x-ray datasets for computeraided screening of pulmonary diseases
-
4
-
S. Jaeger, S. Candemir, S. Antani, Y.-X. J. Wng, P.-X. Lu, and G. Thoma. Two public chest x-ray datasets for computeraided screening of pulmonary diseases. Quantitative Imaging in Medicine and Surgery, 4(6), 2014. 4
-
(2014)
Quantitative Imaging in Medicine and Surgery
, vol.4
, Issue.6
-
-
Jaeger, S.1
Candemir, S.2
Antani, S.3
Wng, Y.-X.J.4
Lu, P.-X.5
Thoma, G.6
-
20
-
-
85044279859
-
Spinenet: Automatically pinpointing classification evidence in spinal mris
-
Springer, 2
-
A. Jamaludin, T. Kadir, and A. Zisserman. Spinenet: Automatically pinpointing classification evidence in spinal mris. In MICCAI. Springer, 2016. 2
-
(2016)
MICCAI.
-
-
Jamaludin, A.1
Kadir, T.2
Zisserman, A.3
-
21
-
-
84913555165
-
-
7
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014. 7
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
22
-
-
84986245786
-
Densecap: Fully convolutional localization networks for dense captioning
-
1, 2, 3
-
J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully convolutional localization networks for dense captioning. In CVPR, 2016. 1, 2, 3
-
(2016)
CVPR
-
-
Johnson, J.1
Karpathy, A.2
Fei-Fei, L.3
-
23
-
-
84946734827
-
Deep visual-semantic alignments for generating image descriptions
-
1, 2
-
A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015. 1, 2
-
(2015)
CVPR
-
-
Karpathy, A.1
Fei-Fei, L.2
-
24
-
-
84978730111
-
-
2, 3
-
R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, M. Bernstein, and L. Fei-Fei. Visual genome: Connecting language and vision using crowdsourced dense image annotations. 2016. 2, 3
-
(2016)
Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations.
-
-
Krishna, R.1
Zhu, Y.2
Groth, O.3
Johnson, J.4
Hata, K.5
Kravitz, J.6
Chen, S.7
Kalantidis, Y.8
Li, L.-J.9
Shamma, D.A.10
Bernstein, M.11
Fei-Fei, L.12
-
25
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
1, 5, 7
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097-1105, 2012. 1, 5, 7
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
26
-
-
84949496799
-
Challenges in clinical natural language processing for automated disorder normalization
-
3
-
R. Leaman, R. Khare, and Z. Lu. Challenges in clinical natural language processing for automated disorder normalization. Journal of Biomedical Informatics, 57:28-37, 2015. 3
-
(2015)
Journal of Biomedical Informatics
, vol.57
, pp. 28-37
-
-
Leaman, R.1
Khare, R.2
Lu, Z.3
-
27
-
-
84906493406
-
Microsoft coco: Common objects in context
-
1, 2, 7
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollr, and L. Zitnick. Microsoft coco: Common objects in context. ECCV, pages (5): 740-755, 2014. 1, 2, 7
-
(2014)
ECCV, Pages
, vol.5
, pp. 740-755
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollr, P.7
Zitnick, L.8
-
29
-
-
85046303238
-
Deep learning for multi-task medical image segmentation in multiple modalities
-
Springer, 2
-
P. Moeskops, J. Wolterink, B. van der Velden, K. Gilhuijs, T. Leiner, M. Viergever, and I. Isgum. Deep learning for multi-task medical image segmentation in multiple modalities. In MICCAI. Springer, 2016. 2
-
(2016)
MICCAI.
-
-
Moeskops, P.1
Wolterink, J.2
Velden Der BVan3
Gilhuijs, K.4
Leiner, T.5
Viergever, M.6
Isgum, I.7
-
30
-
-
84953933150
-
Is object localization for free?-weakly-supervised learning with convolutional neural networks
-
5
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free?-weakly-supervised learning with convolutional neural networks. In IEEE CVPR, pages 685-694, 2015. 5
-
(2015)
IEEE CVPR
, pp. 685-694
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
32
-
-
84973856017
-
Flickr30k entities: Collecting regionto-phrase correspondences for richer image-to-sentence models
-
1, 2, 3
-
B. Plummer, L. Wang, C. Cervantes, J. Caicedo, J. Hockenmaier, and S. Lazebnik. Flickr30k entities: Collecting regionto-phrase correspondences for richer image-to-sentence models. In ICCV, 2015. 1, 2, 3
-
(2015)
ICCV
-
-
Plummer, B.1
Wang, L.2
Cervantes, C.3
Caicedo, J.4
Hockenmaier, J.5
Lazebnik, S.6
-
33
-
-
84986290328
-
Less is more: Zero-shot learning from online textual documents with noise suppression
-
1
-
R. Qiao, L. Liu, C. Shen, and A. van den Hengel. Less is more: zero-shot learning from online textual documents with noise suppression. In CVPR, 2016. 1
-
(2016)
CVPR
-
-
Qiao, R.1
Liu, L.2
Shen, C.3
Hengel Den AVan4
-
34
-
-
84951834022
-
U-net: Convolutional networks for biomedical image segmentation
-
Springer, 2
-
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI, pages 234-241. Springer, 2015. 2
-
(2015)
MICCAI
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
35
-
-
84947475390
-
Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation
-
Springer, 2
-
H. Roth, L. Lu, A. Farag, H.-C. Shin, J. Liu, E. B. Turkbey, and R. M. Summers. Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. In MICCAI, pages 556-564. Springer, 2015. 2
-
(2015)
MICCAI
, pp. 556-564
-
-
Roth, H.1
Lu, L.2
Farag, A.3
Shin, H.-C.4
Liu, J.5
Turkbey, E.B.6
Summers, R.M.7
-
36
-
-
84909644435
-
A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
-
Springer, 2
-
H. R. Roth, L. Lu, A. Seff, K. M. Cherry, J. Hoffman, S. Wang, J. Liu, E. Turkbey, and R. M. Summers. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In MICCAI, pages 520-527. Springer, 2014. 2
-
(2014)
MICCAI
, pp. 520-527
-
-
Roth, H.R.1
Lu, L.2
Seff, A.3
Cherry, K.M.4
Hoffman, J.5
Wang, S.6
Liu, J.7
Turkbey, E.8
Summers, R.M.9
-
37
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
1, 2
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, pages 115(3): 211-252, 2015. 1, 2
-
(2015)
International Journal of Computer Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.11
Fei-Fei, L.12
-
38
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
5
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211-252, 2015. 5
-
(2015)
International Journal of Computer Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
39
-
-
84968638584
-
Pulmonary nodule detection in ct images: False positive reduction using multi-view convolutional networks
-
2
-
A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S. van Riel, M. Wille, M. Naqibullah, C. Snchez, and B. van Ginneken. Pulmonary nodule detection in ct images: False positive reduction using multi-view convolutional networks. IEEE Trans. Medical Imaging, 35(5):1160-1169, 2016. 2
-
(2016)
IEEE Trans. Medical Imaging
, vol.35
, Issue.5
, pp. 1160-1169
-
-
Setio, A.1
Ciompi, F.2
Litjens, G.3
Gerke, P.4
Jacobs, C.5
Van Riel, S.6
Wille, M.7
Naqibullah, M.8
Snchez, C.9
Van Ginneken, B.10
-
40
-
-
84989187487
-
Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation
-
2
-
H. Shin, L. Lu, L. Kim, A. Seff, J. Yao, and R. Summers. Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation. Journal of Machine Learning Research, 17:1-31, 2016. 2
-
(2016)
Journal of Machine Learning Research
, vol.17
, pp. 1-31
-
-
Shin, H.1
Lu, L.2
Kim, L.3
Seff, A.4
Yao, J.5
Summers, R.6
-
41
-
-
84986277510
-
Learning to read chest x-rays: Recurrent neural cascade model for automated image annotation
-
2
-
H. Shin, K. Roberts, L. Lu, D. Demner-Fushman, J. Yao, and R. Summers. Learning to read chest x-rays: Recurrent neural cascade model for automated image annotation. In CVPR, 2016. 2
-
(2016)
CVPR
-
-
Shin, H.1
Roberts, K.2
Lu, L.3
Demner-Fushman, D.4
Yao, J.5
Summers, R.6
-
42
-
-
84969962996
-
Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learnings
-
2
-
H. Shin, H. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. Summers. Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learnings. IEEE Trans. Medical Imaging, 35(5):1285-1298, 2016. 2
-
(2016)
IEEE Trans. Medical Imaging
, vol.35
, Issue.5
, pp. 1285-1298
-
-
Shin, H.1
Roth, H.2
Gao, M.3
Lu, L.4
Xu, Z.5
Nogues, I.6
Yao, J.7
Mollura, D.8
Summers, R.9
-
44
-
-
84937522268
-
Going deeper with convolutions
-
5, 7
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9, 2015. 5, 7
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
45
-
-
85044319964
-
Movieqa: Understanding stories in movies through question-answering
-
1
-
M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and S. Fidler. Movieqa: Understanding stories in movies through question-answering. In ICCV, 2015. 1
-
(2015)
ICCV
-
-
Tapaswi, M.1
Zhu, Y.2
Stiefelhagen, R.3
Torralba, A.4
Urtasun, R.5
Fidler, S.6
-
47
-
-
84946747440
-
Show and tell: A neural image caption generator
-
1, 2
-
O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In CVPR, pages 3156-3164, 2015. 1, 2
-
(2015)
CVPR
, pp. 3156-3164
-
-
Vinyals, O.1
Toshev, A.2
Bengio, S.3
Erhan, D.4
-
48
-
-
85044252372
-
Genodisc dataset: The benefits of multi-disciplinary research on intervertebral disc degeneration
-
2
-
H.-J. Wilke, M. Kmin, and J. Urban. Genodisc dataset: The benefits of multi-disciplinary research on intervertebral disc degeneration. In European Spine Journal, 2016. 2
-
(2016)
European Spine Journal
-
-
Wilke, H.-J.1
Kmin, M.2
Urban, J.3
-
49
-
-
84986320870
-
Ask me anything: Free-form visual question answering based on knowledge from external sources
-
1, 2, 3
-
Q. Wu, P. Wang, C. Shen, A. Dick, and A. van den Hengel. Ask me anything: free-form visual question answering based on knowledge from external sources. In CVPR, 2016. 1, 2, 3
-
(2016)
CVPR
-
-
Wu, Q.1
Wang, P.2
Shen, C.3
Dick, A.4
Hengel Den AVan5
-
50
-
-
85015775511
-
A multi-center milestone study of clinical vertebral ct segmentation
-
2
-
J. Yao and et al. A multi-center milestone study of clinical vertebral ct segmentation. In Computerized Medical Imaging and Graphics, pages 49(4): 16-28, 2016. 2
-
(2016)
Computerized Medical Imaging and Graphics
, vol.49
, Issue.4
, pp. 16-28
-
-
Yao, J.1
-
51
-
-
84906494296
-
From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
-
2
-
P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. In TACL, 2014. 2
-
(2014)
TACL
-
-
Young, P.1
Lai, A.2
Hodosh, M.3
Hockenmaier, J.4
-
52
-
-
84990054197
-
-
5
-
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative localization. arXiv preprint arXiv:1512.04150, 2015. 5
-
(2015)
Learning Deep Features for Discriminative Localization
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Oliva, A.4
Torralba, A.5
-
53
-
-
84986275767
-
Visual7w: Grounded question answering in images
-
1, 2, 3
-
Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei. Visual7w: Grounded question answering in images. In CVPR, 2016. 1, 2, 3
-
(2016)
CVPR
-
-
Zhu, Y.1
Groth, O.2
Bernstein, M.3
Fei-Fei, L.4
|