메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 3462-3471

ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER AIDED INSTRUCTION; COMPUTER VISION; DEEP LEARNING; DEEP NEURAL NETWORKS; DIAGNOSIS; HOSPITALS; MEDICAL APPLICATIONS; NATURAL LANGUAGE PROCESSING SYSTEMS; NEURAL NETWORKS; PATTERN RECOGNITION; PICTURE ARCHIVING AND COMMUNICATION SYSTEMS; X RAY ANALYSIS;

EID: 85042155331     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.369     Document Type: Conference Paper
Times cited : (2956)

References (53)
  • 4
    • 84973882857 scopus 로고    scopus 로고
    • Predicting deep zero-shot convolutional neural networks using textual descriptions
    • J. Ba, K. Swersky, S. Fidler, and R. Salakhutdinov. Predicting deep zero-shot convolutional neural networks using textual descriptions. In ICCV, 2015. 1
    • (2015) ICCV , pp. 1
    • Ba, J.1    Swersky, K.2    Fidler, S.3    Salakhutdinov, R.4
  • 11
    • 84968542337 scopus 로고    scopus 로고
    • Automatic detection of cerebral microbleeds from mr images via 3d convolutional neural networks
    • 2
    • Q. Dou, H. Chen, L. Yu, L. Zhao, J. Qin, D. Wang, V. Mok, L. Shi, and P. Heng. Automatic detection of cerebral microbleeds from mr images via 3d convolutional neural networks. IEEE Trans. Medical Imaging, 35(5):1182-1195, 2016. 2
    • (2016) IEEE Trans. Medical Imaging , vol.35 , Issue.5 , pp. 1182-1195
    • Dou, Q.1    Chen, H.2    Yu, L.3    Zhao, L.4    Qin, J.5    Wang, D.6    Mok, V.7    Shi, L.8    Heng, P.9
  • 12
    • 84952343030 scopus 로고    scopus 로고
    • Weldon: Weakly supervised learning of deep convolutional neural networks
    • 5
    • T. Durand, N. Thome, and M. Cord. Weldon: Weakly supervised learning of deep convolutional neural networks. IEEE CVPR, 2016. 5
    • (2016) IEEE CVPR
    • Durand, T.1    Thome, N.2    Cord, M.3
  • 14
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
    • 2
    • H. Greenspan, B. van Ginneken, and R. M. Summers. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Medical Imaging, 35(5):1153-1159, 2016. 2
    • (2016) IEEE Trans. Medical Imaging , vol.35 , Issue.5 , pp. 1153-1159
    • Greenspan, H.1    Van Ginneken, B.2    Summers, R.M.3
  • 16
    • 84996504008 scopus 로고    scopus 로고
    • Hemis: Hetero-modal image segmentation
    • Springer, 2
    • M. Havaei, N. Guizard, N. Chapados, and Y. Bengio. Hemis: Hetero-modal image segmentation. In MICCAI, pages (2): 469-477. Springer, 2016. 2
    • (2016) MICCAI , vol.2 , pp. 469-477
    • Havaei, M.1    Guizard, N.2    Chapados, N.3    Bengio, Y.4
  • 18
    • 84996602286 scopus 로고    scopus 로고
    • Self-transfer learning for weakly supervised lesion localization
    • 5
    • S. Hwang and H.-E. Kim. Self-transfer learning for weakly supervised lesion localization. In MICCAI, pages (2): 239-246, 2015. 5
    • (2015) MICCAI, Pages , vol.2 , pp. 239-246
    • Hwang, S.1    Kim, H.-E.2
  • 20
    • 85044279859 scopus 로고    scopus 로고
    • Spinenet: Automatically pinpointing classification evidence in spinal mris
    • Springer, 2
    • A. Jamaludin, T. Kadir, and A. Zisserman. Spinenet: Automatically pinpointing classification evidence in spinal mris. In MICCAI. Springer, 2016. 2
    • (2016) MICCAI.
    • Jamaludin, A.1    Kadir, T.2    Zisserman, A.3
  • 22
    • 84986245786 scopus 로고    scopus 로고
    • Densecap: Fully convolutional localization networks for dense captioning
    • 1, 2, 3
    • J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully convolutional localization networks for dense captioning. In CVPR, 2016. 1, 2, 3
    • (2016) CVPR
    • Johnson, J.1    Karpathy, A.2    Fei-Fei, L.3
  • 23
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • 1, 2
    • A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015. 1, 2
    • (2015) CVPR
    • Karpathy, A.1    Fei-Fei, L.2
  • 26
    • 84949496799 scopus 로고    scopus 로고
    • Challenges in clinical natural language processing for automated disorder normalization
    • 3
    • R. Leaman, R. Khare, and Z. Lu. Challenges in clinical natural language processing for automated disorder normalization. Journal of Biomedical Informatics, 57:28-37, 2015. 3
    • (2015) Journal of Biomedical Informatics , vol.57 , pp. 28-37
    • Leaman, R.1    Khare, R.2    Lu, Z.3
  • 30
    • 84953933150 scopus 로고    scopus 로고
    • Is object localization for free?-weakly-supervised learning with convolutional neural networks
    • 5
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free?-weakly-supervised learning with convolutional neural networks. In IEEE CVPR, pages 685-694, 2015. 5
    • (2015) IEEE CVPR , pp. 685-694
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 32
    • 84973856017 scopus 로고    scopus 로고
    • Flickr30k entities: Collecting regionto-phrase correspondences for richer image-to-sentence models
    • 1, 2, 3
    • B. Plummer, L. Wang, C. Cervantes, J. Caicedo, J. Hockenmaier, and S. Lazebnik. Flickr30k entities: Collecting regionto-phrase correspondences for richer image-to-sentence models. In ICCV, 2015. 1, 2, 3
    • (2015) ICCV
    • Plummer, B.1    Wang, L.2    Cervantes, C.3    Caicedo, J.4    Hockenmaier, J.5    Lazebnik, S.6
  • 33
    • 84986290328 scopus 로고    scopus 로고
    • Less is more: Zero-shot learning from online textual documents with noise suppression
    • 1
    • R. Qiao, L. Liu, C. Shen, and A. van den Hengel. Less is more: zero-shot learning from online textual documents with noise suppression. In CVPR, 2016. 1
    • (2016) CVPR
    • Qiao, R.1    Liu, L.2    Shen, C.3    Hengel Den AVan4
  • 34
    • 84951834022 scopus 로고    scopus 로고
    • U-net: Convolutional networks for biomedical image segmentation
    • Springer, 2
    • O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI, pages 234-241. Springer, 2015. 2
    • (2015) MICCAI , pp. 234-241
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 35
    • 84947475390 scopus 로고    scopus 로고
    • Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation
    • Springer, 2
    • H. Roth, L. Lu, A. Farag, H.-C. Shin, J. Liu, E. B. Turkbey, and R. M. Summers. Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. In MICCAI, pages 556-564. Springer, 2015. 2
    • (2015) MICCAI , pp. 556-564
    • Roth, H.1    Lu, L.2    Farag, A.3    Shin, H.-C.4    Liu, J.5    Turkbey, E.B.6    Summers, R.M.7
  • 36
    • 84909644435 scopus 로고    scopus 로고
    • A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
    • Springer, 2
    • H. R. Roth, L. Lu, A. Seff, K. M. Cherry, J. Hoffman, S. Wang, J. Liu, E. Turkbey, and R. M. Summers. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In MICCAI, pages 520-527. Springer, 2014. 2
    • (2014) MICCAI , pp. 520-527
    • Roth, H.R.1    Lu, L.2    Seff, A.3    Cherry, K.M.4    Hoffman, J.5    Wang, S.6    Liu, J.7    Turkbey, E.8    Summers, R.M.9
  • 40
    • 84989187487 scopus 로고    scopus 로고
    • Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation
    • 2
    • H. Shin, L. Lu, L. Kim, A. Seff, J. Yao, and R. Summers. Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation. Journal of Machine Learning Research, 17:1-31, 2016. 2
    • (2016) Journal of Machine Learning Research , vol.17 , pp. 1-31
    • Shin, H.1    Lu, L.2    Kim, L.3    Seff, A.4    Yao, J.5    Summers, R.6
  • 41
    • 84986277510 scopus 로고    scopus 로고
    • Learning to read chest x-rays: Recurrent neural cascade model for automated image annotation
    • 2
    • H. Shin, K. Roberts, L. Lu, D. Demner-Fushman, J. Yao, and R. Summers. Learning to read chest x-rays: Recurrent neural cascade model for automated image annotation. In CVPR, 2016. 2
    • (2016) CVPR
    • Shin, H.1    Roberts, K.2    Lu, L.3    Demner-Fushman, D.4    Yao, J.5    Summers, R.6
  • 42
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learnings
    • 2
    • H. Shin, H. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. Summers. Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learnings. IEEE Trans. Medical Imaging, 35(5):1285-1298, 2016. 2
    • (2016) IEEE Trans. Medical Imaging , vol.35 , Issue.5 , pp. 1285-1298
    • Shin, H.1    Roth, H.2    Gao, M.3    Lu, L.4    Xu, Z.5    Nogues, I.6    Yao, J.7    Mollura, D.8    Summers, R.9
  • 47
    • 84946747440 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • 1, 2
    • O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In CVPR, pages 3156-3164, 2015. 1, 2
    • (2015) CVPR , pp. 3156-3164
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 48
    • 85044252372 scopus 로고    scopus 로고
    • Genodisc dataset: The benefits of multi-disciplinary research on intervertebral disc degeneration
    • 2
    • H.-J. Wilke, M. Kmin, and J. Urban. Genodisc dataset: The benefits of multi-disciplinary research on intervertebral disc degeneration. In European Spine Journal, 2016. 2
    • (2016) European Spine Journal
    • Wilke, H.-J.1    Kmin, M.2    Urban, J.3
  • 49
    • 84986320870 scopus 로고    scopus 로고
    • Ask me anything: Free-form visual question answering based on knowledge from external sources
    • 1, 2, 3
    • Q. Wu, P. Wang, C. Shen, A. Dick, and A. van den Hengel. Ask me anything: free-form visual question answering based on knowledge from external sources. In CVPR, 2016. 1, 2, 3
    • (2016) CVPR
    • Wu, Q.1    Wang, P.2    Shen, C.3    Dick, A.4    Hengel Den AVan5
  • 50
    • 85015775511 scopus 로고    scopus 로고
    • A multi-center milestone study of clinical vertebral ct segmentation
    • 2
    • J. Yao and et al. A multi-center milestone study of clinical vertebral ct segmentation. In Computerized Medical Imaging and Graphics, pages 49(4): 16-28, 2016. 2
    • (2016) Computerized Medical Imaging and Graphics , vol.49 , Issue.4 , pp. 16-28
    • Yao, J.1
  • 51
    • 84906494296 scopus 로고    scopus 로고
    • From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
    • 2
    • P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. In TACL, 2014. 2
    • (2014) TACL
    • Young, P.1    Lai, A.2    Hodosh, M.3    Hockenmaier, J.4
  • 53
    • 84986275767 scopus 로고    scopus 로고
    • Visual7w: Grounded question answering in images
    • 1, 2, 3
    • Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei. Visual7w: Grounded question answering in images. In CVPR, 2016. 1, 2, 3
    • (2016) CVPR
    • Zhu, Y.1    Groth, O.2    Bernstein, M.3    Fei-Fei, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.