메뉴 건너뛰기




Volumn 14, Issue 6, 2018, Pages

Reversing allosteric communication: From detecting allosteric sites to inducing and tuning targeted allosteric response

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMICS; SITE SELECTION; STRUCTURAL DYNAMICS; TUNING;

EID: 85049369467     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1006228     Document Type: Article
Times cited : (66)

References (56)
  • 2
    • 84876266689 scopus 로고    scopus 로고
    • Allostery in Disease and in Drug Discovery
    • pmid:23582321
    • Nussinov R., Tsai C.-J., Allostery in Disease and in Drug Discovery. Cell153, 293–305 (2013). doi: 10.1016/j.cell.2013.03.034 pmid: 23582321
    • (2013) Cell , vol.153 , pp. 293-305
    • Nussinov, R.1    Tsai, C.-J.2
  • 3
    • 84907979005 scopus 로고    scopus 로고
    • Harnessing allostery: a novel approach to drug discovery
    • pmid:24827416
    • Lu S., Li S., Zhang J., Harnessing allostery: a novel approach to drug discovery. Med. Res. Rev. 34, 1242–1285 (2014). doi: 10.1002/med.21317 pmid: 24827416
    • (2014) Med. Res. Rev , vol.34 , pp. 1242-1285
    • Lu, S.1    Li, S.2    Zhang, J.3
  • 4
    • 84908644902 scopus 로고    scopus 로고
    • Recent computational advances in the identification of allosteric sites in proteins
    • pmid:25107670
    • Lu S., Huang W., Zhang J., Recent computational advances in the identification of allosteric sites in proteins. Drug Discov. Today19, 1595–1600 (2014). doi: 10.1016/j.drudis.2014.07.012 pmid: 25107670
    • (2014) Drug Discov. Today , vol.19 , pp. 1595-1600
    • Lu, S.1    Huang, W.2    Zhang, J.3
  • 5
    • 84946906524 scopus 로고    scopus 로고
    • Allosteric sites: remote control in regulation of protein activity
    • pmid:26562539
    • Guarnera E., Berezovsky I. N., Allosteric sites: remote control in regulation of protein activity. Curr. Opin. Struct. Biol. 37, 1–8 (2016). doi: 10.1016/j.sbi.2015.10.004 pmid: 26562539
    • (2016) Curr. Opin. Struct. Biol , vol.37 , pp. 1-8
    • Guarnera, E.1    Berezovsky, I.N.2
  • 7
    • 6344219895 scopus 로고    scopus 로고
    • Is allostery an intrinsic property of all dynamic proteins?
    • pmid:15382234
    • Gunasekaran K., Ma B., Nussinov R., Is allostery an intrinsic property of all dynamic proteins?Proteins57, 433–443 (2004). doi: 10.1002/prot.20232 pmid: 15382234
    • (2004) Proteins , vol.57 , pp. 433-443
    • Gunasekaran, K.1    Ma, B.2    Nussinov, R.3
  • 8
    • 84872511666 scopus 로고    scopus 로고
    • Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features
    • pmid:23249378
    • Fang Z., Grütter C., Rauh D., Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem. Biol. 8, 58–70 (2013). doi: 10.1021/cb300663j pmid: 23249378
    • (2013) ACS Chem. Biol , vol.8 , pp. 58-70
    • Fang, Z.1    Grütter, C.2    Rauh, D.3
  • 9
    • 42049095895 scopus 로고    scopus 로고
    • Conservation, variability and the modeling of active protein kinases
    • pmid:17912359
    • Knight J. D. R., Qian B., Baker D., Kothary R., Conservation, variability and the modeling of active protein kinases. PLoS One2, e982 (2007). doi: 10.1371/journal.pone.0000982 pmid: 17912359
    • (2007) PLoS One , vol.2 , pp. e982
    • Knight, J.D.R.1    Qian, B.2    Baker, D.3    Kothary, R.4
  • 10
    • 84881271660 scopus 로고    scopus 로고
    • Emerging paradigms in GPCR allostery: implications for drug discovery
    • pmid:23903222
    • Wootten D., Christopoulos A., Sexton P. M., Emerging paradigms in GPCR allostery: implications for drug discovery. Nat. Rev. Drug Discov. 12, 630–644 (2013). doi: 10.1038/nrd4052 pmid: 23903222
    • (2013) Nat. Rev. Drug Discov , vol.12 , pp. 630-644
    • Wootten, D.1    Christopoulos, A.2    Sexton, P.M.3
  • 11
    • 3042557815 scopus 로고    scopus 로고
    • Allosteric Modulation of G Protein-Coupled Receptors
    • pmid:15279541
    • May L., Avlani V., Sexton P., Christopoulos A., Allosteric Modulation of G Protein-Coupled Receptors. Curr. Pharm. Des. 10, 2003–2013 (2004). pmid: 15279541
    • (2004) Curr. Pharm. Des , vol.10 , pp. 2003-2013
    • May, L.1    Avlani, V.2    Sexton, P.3    Christopoulos, A.4
  • 12
    • 58149193205 scopus 로고    scopus 로고
    • Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders
    • pmid:19116626
    • Conn P. J., Christopoulos A., Lindsley C. W., Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov. 8, 41–54 (2009). doi: 10.1038/nrd2760 pmid: 19116626
    • (2009) Nat. Rev. Drug Discov , vol.8 , pp. 41-54
    • Conn, P.J.1    Christopoulos, A.2    Lindsley, C.W.3
  • 13
    • 36849028142 scopus 로고    scopus 로고
    • Calcium sensing receptor activators: calcimimetics
    • pmid:18220738
    • Harrington P. E., Fotsch C., Calcium sensing receptor activators: calcimimetics. Curr. Med. Chem. 14, 3027–3034 (2007). pmid: 18220738
    • (2007) Curr. Med. Chem , vol.14 , pp. 3027-3034
    • Harrington, P.E.1    Fotsch, C.2
  • 14
    • 27644510382 scopus 로고    scopus 로고
    • Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity
    • pmid:16251317
    • Dorr P., et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 49, 4721–4732 (2005). doi: 10.1128/AAC.49.11.4721-4732.2005 pmid: 16251317
    • (2005) Antimicrob. Agents Chemother , vol.49 , pp. 4721-4732
    • Dorr, P.1
  • 15
    • 85029920801 scopus 로고    scopus 로고
    • Improved Method for the Identification and Validation of Allosteric Sites
    • pmid:28825477
    • Song K., et al. Improved Method for the Identification and Validation of Allosteric Sites. J. Chem. Inf. Model. 57, 2358–2363 (2017). doi: 10.1021/acs.jcim.7b00014 pmid: 28825477
    • (2017) J. Chem. Inf. Model , vol.57 , pp. 2358-2363
    • Song, K.1
  • 16
    • 85031689349 scopus 로고    scopus 로고
    • Discovery of hidden allosteric sites as novel targets for allosteric drug design
    • pmid:29030241
    • Lu S., Ji M., Ni D., Zhang J., Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug Discov. Today (2017). doi: 10.1016/j.drudis.2017.10.001 pmid: 29030241
    • (2017) Drug Discov. Today
    • Lu, S.1    Ji, M.2    Ni, D.3    Zhang, J.4
  • 17
    • 84905035389 scopus 로고    scopus 로고
    • Computing protein dynamics from protein structure with elastic network models
    • Bastolla U., Computing protein dynamics from protein structure with elastic network models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 488–503 (2014).
    • (2014) Wiley Interdiscip. Rev. Comput. Mol. Sci , vol.4 , pp. 488-503
    • Bastolla, U.1
  • 18
    • 79952131874 scopus 로고    scopus 로고
    • Impact of high-throughput screening in biomedical research
    • pmid:21358738
    • Macarron R., et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10, 188–195 (2011). doi: 10.1038/nrd3368 pmid: 21358738
    • (2011) Nat. Rev. Drug Discov , vol.10 , pp. 188-195
    • Macarron, R.1
  • 19
    • 84894266263 scopus 로고    scopus 로고
    • A structure-guided fragment-based approach for the discovery of allosteric inhibitors targeting the lipophilic binding site of transcription factor EthR
    • pmid:24313835
    • Surade S., et al. A structure-guided fragment-based approach for the discovery of allosteric inhibitors targeting the lipophilic binding site of transcription factor EthR. Biochem. J458, 387–394 (2014). doi: 10.1042/BJ20131127 pmid: 24313835
    • (2014) Biochem. J , vol.458 , pp. 387-394
    • Surade, S.1
  • 20
    • 84938828476 scopus 로고    scopus 로고
    • High-Throughput Screening for Allosteric Modulators of GPCRs
    • pmid:26260604
    • Bertekap R. L., Burford N. T, JrLi Z, Alt A, High-Throughput Screening for Allosteric Modulators of GPCRs. Methods Mol. Biol. 1335, 223–240 (2015). doi: 10.1007/978-1-4939-2914-6_15 pmid: 26260604
    • (2015) Methods Mol. Biol , vol.1335 , pp. 223-240
    • Bertekap, R.L.1    Burford, N.T.2    Li, Z.3    Alt, A.4
  • 21
    • 79955038588 scopus 로고    scopus 로고
    • Turning a protein kinase on or off from a single allosteric site via disulfide trapping
    • Sadowsky J. D., et al. Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proceedings of the National Academy of Sciences108, 6056–6061 (2011).
    • (2011) Proceedings of the National Academy of Sciences , vol.108 , pp. 6056-6061
    • Sadowsky, J.D.1
  • 22
    • 73249124001 scopus 로고    scopus 로고
    • Probing Allosteric Binding Sites of the Maize Endosperm ADP-Glucose Pyrophosphorylase
    • pmid:19889875
    • Boehlein S. K., Shaw J. R., Hannah L. C., Stewart J. D., Probing Allosteric Binding Sites of the Maize Endosperm ADP-Glucose Pyrophosphorylase. Plant Physiol. 152, 85–95 (2009). doi: 10.1104/pp.109.146928 pmid: 19889875
    • (2009) Plant Physiol , vol.152 , pp. 85-95
    • Boehlein, S.K.1    Shaw, J.R.2    Hannah, L.C.3    Stewart, J.D.4
  • 23
    • 79953170596 scopus 로고    scopus 로고
    • Cyclic AMP analog blocks kinase activation by stabilizing inactive conformation: conformational selection highlights a new concept in allosteric inhibitor design
    • 004390
    • Badireddy S., et al. Cyclic AMP analog blocks kinase activation by stabilizing inactive conformation: conformational selection highlights a new concept in allosteric inhibitor design. Mol. Cell. Proteomics10, M110.004390 (2011).
    • (2011) Mol. Cell. Proteomics , vol.10 , pp. M110
    • Badireddy, S.1
  • 24
    • 84941810399 scopus 로고    scopus 로고
    • Parallel Allostery by cAMP and PDE Coordinates Activation and Termination Phases in cAMP Signaling
    • pmid:26276689
    • Krishnamurthy S., Tulsian N. K., Chandramohan A., Anand G. S., Parallel Allostery by cAMP and PDE Coordinates Activation and Termination Phases in cAMP Signaling. Biophys. J. 109, 1251–1263 (2015). doi: 10.1016/j.bpj.2015.06.067 pmid: 26276689
    • (2015) Biophys. J , vol.109 , pp. 1251-1263
    • Krishnamurthy, S.1    Tulsian, N.K.2    Chandramohan, A.3    Anand, G.S.4
  • 25
    • 84883196231 scopus 로고    scopus 로고
    • Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death
    • pmid:23892893
    • Magnaghi P., et al. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat. Chem. Biol. 9, 548–556 (2013). doi: 10.1038/nchembio.1313 pmid: 23892893
    • (2013) Nat. Chem. Biol , vol.9 , pp. 548-556
    • Magnaghi, P.1
  • 26
    • 84875996404 scopus 로고    scopus 로고
    • -Secretase Modulator (GSM) Photoaffinity Probes Reveal Distinct Allosteric Binding Sites on Presenilin
    • pmid:23396974
    • Pozdnyakov N., et al. -Secretase Modulator (GSM) Photoaffinity Probes Reveal Distinct Allosteric Binding Sites on Presenilin. J. Biol. Chem. 288, 9710–9720 (2013). doi: 10.1074/jbc.M112.398602 pmid: 23396974
    • (2013) J. Biol. Chem , vol.288 , pp. 9710-9720
    • Pozdnyakov, N.1
  • 27
    • 84939564119 scopus 로고    scopus 로고
    • Computational Advances for the Development of Allosteric Modulators and Bitopic Ligands in G Protein-Coupled Receptors
    • pmid:25940084
    • Feng Z., Hu G., Ma S., Xie X.-Q., Computational Advances for the Development of Allosteric Modulators and Bitopic Ligands in G Protein-Coupled Receptors. AAPS J. 17, 1080–1095 (2015). doi: 10.1208/s12248-015-9776-y pmid: 25940084
    • (2015) AAPS J , vol.17 , pp. 1080-1095
    • Feng, Z.1    Hu, G.2    Ma, S.3    Xie, X.-Q.4
  • 28
    • 84944474861 scopus 로고    scopus 로고
    • Protein sectors: statistical coupling analysis versus conservation
    • pmid:25723535
    • Teşileanu T., Colwell L. J., Leibler S., Protein sectors: statistical coupling analysis versus conservation. PLoS Comput. Biol. 11, e1004091 (2015). doi: 10.1371/journal.pcbi.1004091 pmid: 25723535
    • (2015) PLoS Comput. Biol , vol.11 , pp. e1004091
    • Teşileanu, T.1    Colwell, L.J.2    Leibler, S.3
  • 29
    • 0030433170 scopus 로고    scopus 로고
    • Protein dynamics and conformational transitions in allosteric proteins
    • pmid:9062432
    • Jardetzky O., Protein dynamics and conformational transitions in allosteric proteins. Prog. Biophys. Mol. Biol. 65, 171–219 (1996). pmid: 9062432
    • (1996) Prog. Biophys. Mol. Biol , vol.65 , pp. 171-219
    • Jardetzky, O.1
  • 30
    • 84883468084 scopus 로고    scopus 로고
    • Allosite: a method for predicting allosteric sites
    • pmid:23842804
    • Huang W., et al. Allosite: a method for predicting allosteric sites. Bioinformatics29, 2357–2359 (2013). doi: 10.1093/bioinformatics/btt399 pmid: 23842804
    • (2013) Bioinformatics , vol.29 , pp. 2357-2359
    • Huang, W.1
  • 31
    • 84962124121 scopus 로고    scopus 로고
    • Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of Allosteric Communication
    • pmid:26939022
    • Guarnera E., Berezovsky I. N., Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of Allosteric Communication. PLoS Comput. Biol. 12, e1004678 (2016). doi: 10.1371/journal.pcbi.1004678 pmid: 26939022
    • (2016) PLoS Comput. Biol , vol.12 , pp. e1004678
    • Guarnera, E.1    Berezovsky, I.N.2
  • 32
    • 80053440006 scopus 로고    scopus 로고
    • Binding leverage as a molecular basis for allosteric regulation
    • pmid:21935347
    • Mitternacht S., Berezovsky I. N., Binding leverage as a molecular basis for allosteric regulation. PLoS Comput. Biol. 7, e1002148 (2011). doi: 10.1371/journal.pcbi.1002148 pmid: 21935347
    • (2011) PLoS Comput. Biol , vol.7 , pp. e1002148
    • Mitternacht, S.1    Berezovsky, I.N.2
  • 33
    • 84855283469 scopus 로고    scopus 로고
    • Coherent conformational degrees of freedom as a structural basis for allosteric communication
    • pmid:22174669
    • Mitternacht S., Berezovsky I. N., Coherent conformational degrees of freedom as a structural basis for allosteric communication. PLoS Comput. Biol. 7, e1002301 (2011). doi: 10.1371/journal.pcbi.1002301 pmid: 22174669
    • (2011) PLoS Comput. Biol , vol.7 , pp. e1002301
    • Mitternacht, S.1    Berezovsky, I.N.2
  • 34
    • 84943634927 scopus 로고    scopus 로고
    • ASBench: benchmarking sets for allosteric discovery: Fig 1
    • pmid:25810427
    • Huang W., et al. ASBench: benchmarking sets for allosteric discovery: Fig 1. Bioinformatics31, 2598–2600 (2015). doi: 10.1093/bioinformatics/btv169 pmid: 25810427
    • (2015) Bioinformatics , vol.31 , pp. 2598-2600
    • Huang, W.1
  • 35
    • 84995588026 scopus 로고    scopus 로고
    • Protein function machinery: from basic structural units to modulation of activity
    • pmid:27865209
    • Berezovsky I. N., Guarnera E., Zheng Z., Eisenhaber B., Eisenhaber F., Protein function machinery: from basic structural units to modulation of activity. Curr. Opin. Struct. Biol. 42, 67–74 (2017). doi: 10.1016/j.sbi.2016.10.021 pmid: 27865209
    • (2017) Curr. Opin. Struct. Biol , vol.42 , pp. 67-74
    • Berezovsky, I.N.1    Guarnera, E.2    Zheng, Z.3    Eisenhaber, B.4    Eisenhaber, F.5
  • 36
    • 66349083528 scopus 로고    scopus 로고
    • Structural basis for cAMP-mediated allosteric control of the catabolite activator protein
    • pmid:19359484
    • Popovych N., Tzeng S.-R., Tonelli M., Ebright R. H., Kalodimos C. G., Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc. Natl. Acad. Sci. U. S. A. 106, 6927–6932 (2009). doi: 10.1073/pnas.0900595106 pmid: 19359484
    • (2009) Proc. Natl. Acad. Sci. U. S. A , vol.106 , pp. 6927-6932
    • Popovych, N.1    Tzeng, S.-R.2    Tonelli, M.3    Ebright, R.H.4    Kalodimos, C.G.5
  • 37
    • 84941312537 scopus 로고    scopus 로고
    • The role of protein-ligand contacts in allosteric regulation of the Escherichia coli catabolite activator protein
    • pmid:26187469
    • Townsend P. D., et al. The role of protein-ligand contacts in allosteric regulation of the Escherichia coli catabolite activator protein. J. Biol. Chem. 290, 22225–22235 (2015). doi: 10.1074/jbc.M115.669267 pmid: 26187469
    • (2015) J. Biol. Chem , vol.290 , pp. 22225-22235
    • Townsend, P.D.1
  • 38
    • 75149114627 scopus 로고    scopus 로고
    • Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity
    • pmid:19783784
    • Wu X., et al. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity. FASEB J. 24, 242–252 (2010). doi: 10.1096/fj.09-140194 pmid: 19783784
    • (2010) FASEB J , vol.24 , pp. 242-252
    • Wu, X.1
  • 39
    • 54249092318 scopus 로고    scopus 로고
    • Untangling the glutamate dehydrogenase allosteric nightmare
    • pmid:18819805
    • Smith T. J., Stanley C. A., Untangling the glutamate dehydrogenase allosteric nightmare. Trends Biochem. Sci. 33, 557–564 (2008). doi: 10.1016/j.tibs.2008.07.007 pmid: 18819805
    • (2008) Trends Biochem. Sci , vol.33 , pp. 557-564
    • Smith, T.J.1    Stanley, C.A.2
  • 40
    • 84857804808 scopus 로고    scopus 로고
    • The structure and allosteric regulation of mammalian glutamate dehydrogenase
    • pmid:22079166
    • Li M., Li C., Allen A., Stanley C. A., Smith T. J., The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch. Biochem. Biophys. 519, 69–80 (2012). doi: 10.1016/j.abb.2011.10.015 pmid: 22079166
    • (2012) Arch. Biochem. Biophys , vol.519 , pp. 69-80
    • Li, M.1    Li, C.2    Allen, A.3    Stanley, C.A.4    Smith, T.J.5
  • 41
    • 0033135157 scopus 로고    scopus 로고
    • The allosteric transition of glucosamine-6-phosphate deaminase: the structure of the T state at 2.3 Å resolution
    • pmid:10378272
    • Horjales E., Altamirano M. M., Calcagno M. L., Garratt R. C., Oliva G., The allosteric transition of glucosamine-6-phosphate deaminase: the structure of the T state at 2.3 Å resolution. Structure7, 527–537 (1999). pmid: 10378272
    • (1999) Structure , vol.7 , pp. 527-537
    • Horjales, E.1    Altamirano, M.M.2    Calcagno, M.L.3    Garratt, R.C.4    Oliva, G.5
  • 42
    • 13444267354 scopus 로고    scopus 로고
    • Evidence for two different mechanisms triggering the change in quaternary structure of the allosteric enzyme, glucosamine-6-phosphate deaminase
    • pmid:15667206
    • Bustos-Jaimes I., Ramírez-Costa M., De Anda-Aguilar L., Hinojosa-Ocaña P., Calcagno M. L., Evidence for two different mechanisms triggering the change in quaternary structure of the allosteric enzyme, glucosamine-6-phosphate deaminase. Biochemistry44, 1127–1135 (2005). doi: 10.1021/bi048514o pmid: 15667206
    • (2005) Biochemistry , vol.44 , pp. 1127-1135
    • Bustos-Jaimes, I.1    Ramírez-Costa, M.2    De Anda-Aguilar, L.3    Hinojosa-Ocaña, P.4    Calcagno, M.L.5
  • 43
    • 73649152457 scopus 로고
    • Allosteric proteins and cellular control systems
    • pmid:13936070
    • Monod J., Changeux J.-P., Jacob F., Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306–329 (1963). pmid: 13936070
    • (1963) J. Mol. Biol , vol.6 , pp. 306-329
    • Monod, J.1    Changeux, J.-P.2    Jacob, F.3
  • 45
    • 34548319658 scopus 로고    scopus 로고
    • Structure of inhibited fructose-1,6-bisphosphatase from Escherichia coli: distinct allosteric inhibition sites for AMP and glucose 6-phosphate and the characterization of a gluconeogenic switch
    • pmid:17567577
    • Hines J. K., Kruesel C. E., Fromm H. J., Honzatko R. B., Structure of inhibited fructose-1,6-bisphosphatase from Escherichia coli: distinct allosteric inhibition sites for AMP and glucose 6-phosphate and the characterization of a gluconeogenic switch. J. Biol. Chem. 282, 24697–24706 (2007). doi: 10.1074/jbc.M703580200 pmid: 17567577
    • (2007) J. Biol. Chem , vol.282 , pp. 24697-24706
    • Hines, J.K.1    Kruesel, C.E.2    Fromm, H.J.3    Honzatko, R.B.4
  • 46
    • 0037194657 scopus 로고    scopus 로고
    • Anilinoquinazoline Inhibitors of Fructose 1,6-Bisphosphatase Bind at a Novel Allosteric Site: Synthesis, In Vitro Characterization, and X-ray Crystallography
    • pmid:12190310
    • Wright S. W., et al. Anilinoquinazoline Inhibitors of Fructose 1,6-Bisphosphatase Bind at a Novel Allosteric Site: Synthesis, In Vitro Characterization, and X-ray Crystallography. J. Med. Chem. 45, 3865–3877 (2002). pmid: 12190310
    • (2002) J. Med. Chem , vol.45 , pp. 3865-3877
    • Wright, S.W.1
  • 47
    • 2942563996 scopus 로고    scopus 로고
    • Dual functional roles of ATP in the human mitochondrial malic enzyme
    • pmid:15182181
    • Hsu W.-C., Hung H.-C., Tong L., Chang G.-G., Dual functional roles of ATP in the human mitochondrial malic enzyme. Biochemistry43, 7382–7390 (2004). doi: 10.1021/bi049600r pmid: 15182181
    • (2004) Biochemistry , vol.43 , pp. 7382-7390
    • Hsu, W.-C.1    Hung, H.-C.2    Tong, L.3    Chang, G.-G.4
  • 48
    • 85019618932 scopus 로고    scopus 로고
    • Exploring the limits of the usefulness of mutagenesis in studies of allosteric mechanisms
    • pmid:28459139
    • Tang Q., Alontage A. Y., Holyoak T., Fenton A. W., Exploring the limits of the usefulness of mutagenesis in studies of allosteric mechanisms. Hum. Mutat. 38, 1144–1154 (2017). doi: 10.1002/humu.23239 pmid: 28459139
    • (2017) Hum. Mutat , vol.38 , pp. 1144-1154
    • Tang, Q.1    Alontage, A.Y.2    Holyoak, T.3    Fenton, A.W.4
  • 49
    • 84978832826 scopus 로고    scopus 로고
    • Predicting allosteric effects from orthosteric binding in Hsp90-ligand interactions: Implications for fragment-based drug design
    • pmid:27253209
    • Chandramohan A., et al. Predicting allosteric effects from orthosteric binding in Hsp90-ligand interactions: Implications for fragment-based drug design. PLoS Comput. Biol. 12, e1004840 (2016). doi: 10.1371/journal.pcbi.1004840 pmid: 27253209
    • (2016) PLoS Comput. Biol , vol.12 , pp. e1004840
    • Chandramohan, A.1
  • 50
    • 85029591536 scopus 로고    scopus 로고
    • An engineered photoswitchable mammalian pyruvate kinase
    • pmid:28715126
    • Gehrig S., et al. An engineered photoswitchable mammalian pyruvate kinase. FEBS J. 284, 2955–2980 (2017). doi: 10.1111/febs.14175 pmid: 28715126
    • (2017) FEBS J , vol.284 , pp. 2955-2980
    • Gehrig, S.1
  • 51
    • 0036616218 scopus 로고    scopus 로고
    • The Protein Data Bank
    • Berman H. M., et al. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 58, 899–907 (2002).
    • (2002) Acta Crystallogr. D Biol , vol.58 , pp. 899-907
    • Berman, H.M.1
  • 52
    • 34548232365 scopus 로고    scopus 로고
    • Inference of macromolecular assemblies from crystalline state
    • pmid:17681537
    • Krissinel E., Henrick K., Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007). doi: 10.1016/j.jmb.2007.05.022 pmid: 17681537
    • (2007) J. Mol. Biol , vol.372 , pp. 774-797
    • Krissinel, E.1    Henrick, K.2
  • 54
    • 0001962564 scopus 로고    scopus 로고
    • The molecular modeling toolkit: A new approach to molecular simulations
    • Hinsen K., The molecular modeling toolkit: A new approach to molecular simulations. J. Comput. Chem. 21, 79–85 (2000).
    • (2000) J. Comput. Chem , vol.21 , pp. 79-85
    • Hinsen, K.1
  • 55
    • 0032533790 scopus 로고    scopus 로고
    • Analysis of domain motions by approximate normal mode calculations
    • pmid:9829700
    • Hinsen K., Analysis of domain motions by approximate normal mode calculations. Proteins33, 417–429 (1998). pmid: 9829700
    • (1998) Proteins , vol.33 , pp. 417-429
    • Hinsen, K.1
  • 56
    • 4444221565 scopus 로고    scopus 로고
    • UCSF Chimera—a visualization system for exploratory research and analysis
    • pmid:15264254
    • Pettersen E. F., et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). doi: 10.1002/jcc.20084 pmid: 15264254
    • (2004) J. Comput. Chem , vol.25 , pp. 1605-1612
    • Pettersen, E.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.