메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Hyperband: Bandit-based configuration evaluation for hyperparameter optimization

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING ALGORITHMS; OPTIMIZATION;

EID: 85049152514     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (160)

References (28)
  • 1
    • 84868292661 scopus 로고    scopus 로고
    • Oracle inequalities for computationally budgeted model selection
    • A. Agarwal, J. Duchi, P. L. Bartlett, and C. Levrard. Oracle inequalities for computationally budgeted model selection. In COLT, 2011.
    • (2011) COLT
    • Agarwal, A.1    Duchi, J.2    Bartlett, P.L.3    Levrard, C.4
  • 2
    • 84919949624 scopus 로고    scopus 로고
    • Least squares revisited: Scalable approaches for multi-class prediction
    • A. Agarwal, S. Kakade, N. Karampatziakis, L. Song, and G. Valiant. Least squares revisited: Scalable approaches for multi-class prediction. In ICML, 2014.
    • (2014) ICML
    • Agarwal, A.1    Kakade, S.2    Karampatziakis, N.3    Song, L.4    Valiant, G.5
  • 3
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. In JMLR, 2012.
    • (2012) JMLR
    • Bergstra, J.1    Bengio, Y.2
  • 4
    • 85162384813 scopus 로고    scopus 로고
    • Algorithms for hyper-parameter optimization
    • J. Bergstra et al. Algorithms for hyper-parameter optimization. In NIPS, 2011.
    • (2011) NIPS
    • Bergstra, J.1
  • 5
    • 84949921865 scopus 로고    scopus 로고
    • Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
    • T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In IJCAI, 2015.
    • (2015) IJCAI
    • Domhan, T.1    Springenberg, J.T.2    Hutter, F.3
  • 6
    • 84919931099 scopus 로고    scopus 로고
    • Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
    • K. Eggensperger et al. Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In NIPS Bayesian Optimization Workshop, 2013.
    • (2013) NIPS Bayesian Optimization Workshop
    • Eggensperger, K.1
  • 7
    • 80053392476 scopus 로고    scopus 로고
    • Efficient multi-start strategies for local search algorithms
    • A. György and L. Kocsis. Efficient multi-start strategies for local search algorithms. JAIR, 41, 2011.
    • (2011) JAIR , vol.41
    • György, A.1    Kocsis, L.2
  • 8
    • 84856930049 scopus 로고    scopus 로고
    • Sequential model-based optimization for general algorithm configuration
    • F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In Proc. of LION-5, 2011.
    • (2011) Proc. Of LION-5
    • Hutter, F.1    Hoos, H.2    Leyton-Brown, K.3
  • 10
    • 85010363885 scopus 로고    scopus 로고
    • Non-stochastic best arm identification and hyperparameter optimization
    • K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter optimization. In AISTATS, 2015.
    • (2015) AISTATS
    • Jamieson, K.1    Talwalkar, A.2
  • 12
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images
    • Department of Computer Science, Univsersity of Toronto
    • A. Krizhevsky. Learning multiple layers of features from tiny images. In Technical report, Department of Computer Science, Univsersity of Toronto, 2009.
    • (2009) Technical Report
    • Krizhevsky, A.1
  • 14
    • 50249093806 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • H. Larochelle et al. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, 2007.
    • (2007) ICML
    • Larochelle, H.1
  • 16
    • 0001923944 scopus 로고
    • Hoeffding races: Accelerating model selection search for classification and function approximation
    • O. Maron and A. Moore. Hoeffding races: Accelerating model selection search for classification and function approximation. In NIPS, 1993.
    • (1993) NIPS
    • Maron, O.1    Moore, A.2
  • 18
    • 77953218689 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, 2007.
    • (2007) NIPS
    • Rahimi, A.1    Recht, B.2
  • 20
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • R. Rifkin and A. Klautau. In defense of one-vs-all classification. JMLR, 2004.
    • (2004) JMLR
    • Rifkin, R.1    Klautau, A.2
  • 21
    • 85007162574 scopus 로고    scopus 로고
    • Selecting near-optimal learners via incremental data allocation
    • A. Sabharwal, H. Samulowitz, and G. Tesauro. Selecting near-optimal learners via incremental data allocation. In AAAI, 2016.
    • (2016) AAAI
    • Sabharwal, A.1    Samulowitz, H.2    Tesauro, G.3
  • 22
    • 84874575248 scopus 로고    scopus 로고
    • Convolutional neural networks applied to house numbers digit classification
    • P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied to house numbers digit classification. In ICPR, 2012.
    • (2012) ICPR
    • Sermanet, P.1    Chintala, S.2    LeCun, Y.3
  • 23
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • J. Snoek, H. Larochelle, and R. Adams. Practical bayesian optimization of machine learning algorithms. In NIPS, 2012.
    • (2012) NIPS
    • Snoek, J.1    Larochelle, H.2    Adams, R.3
  • 24
    • 84970022032 scopus 로고    scopus 로고
    • Bayesian optimization using deep neural networks
    • J. Snoek et al. Bayesian optimization using deep neural networks. In ICML, 2015.
    • (2015) ICML
    • Snoek, J.1
  • 26
    • 84898939805 scopus 로고    scopus 로고
    • Multi-task Bayesian optimization
    • K. Swersky, J. Snoek, and R. Adams. Multi-task bayesian optimization. In NIPS, 2013.
    • (2013) NIPS
    • Swersky, K.1    Snoek, J.2    Adams, R.3
  • 28
    • 85018371540 scopus 로고    scopus 로고
    • Auto-weka: Combined selection and hyperparameter optimization of classification algorithms
    • C. Thornton et al. Auto-weka: Combined selection and hyperparameter optimization of classification algorithms. In KDD, 2013.
    • (2013) KDD
    • Thornton, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.