메뉴 건너뛰기




Volumn 16, Issue , 2015, Pages 1103-1155

Fast cross-validation via sequential testing

Author keywords

Cross validation; Nonparametric methods; Statistical testing

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 84962236224     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (42)

References (56)
  • 1
    • 0013916184 scopus 로고
    • Closed sequential tests for binomial probabilities
    • D. W. Alling. Closed sequential tests for binomial probabilities. Biometrika, 53(1/2):73-84, 1966.
    • (1966) Biometrika , vol.53 , Issue.1-2 , pp. 73-84
    • Alling, D.W.1
  • 2
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • S. Arlot, A. Celisse, and P. Painleve. A survey of cross-validation procedures for model selection. Statistics Surveys, 4:40-79, 2010.
    • (2010) Statistics Surveys , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2    Painleve, P.3
  • 6
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12(8):1889-1900, 2000.
    • (2000) Neural Computation , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 12
    • 0033400675 scopus 로고    scopus 로고
    • Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    • J. A. Blackard and D. J. Dean. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Computers and Electronics in Agriculture, 24:131-151, 1999.
    • (1999) Computers and Electronics in Agriculture , vol.24 , pp. 131-151
    • Blackard, J.A.1    Dean, D.J.2
  • 18
    • 78651015947 scopus 로고
    • The comparison of percentages in matched samples
    • W. G. Cochran. The comparison of percentages in matched samples. Biometrika, 37(3-4):256-266, 1950.
    • (1950) Biometrika , vol.37 , Issue.3-4 , pp. 256-266
    • Cochran, W.G.1
  • 21
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3):425-455, 1994.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 425-455
    • Donoho, D.L.1    Johnstone, J.M.2
  • 22
    • 34248156688 scopus 로고    scopus 로고
    • On the V gamma dimension for regression in reproducing kernel hilbert spaces
    • O. Watanabe and T. Yokomori, editors
    • T. Evgeniou and M. Pontil. On the V gamma dimension for regression in reproducing kernel hilbert spaces. In O. Watanabe and T. Yokomori, editors, Algorithmic Learning Theory, pages 106-117, 1999.
    • (1999) Algorithmic Learning Theory , pp. 106-117
    • Evgeniou, T.1    Pontil, M.2
  • 23
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200):675-701, 1937.
    • (1937) Journal of the American Statistical Association , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 24
    • 84950645271 scopus 로고
    • The predictive sample reuse method with applications
    • S. Geisser. The predictive sample reuse method with applications. Journal of the American Statistical Association, 70(350):320-328, 1975.
    • (1975) Journal of the American Statistical Association , vol.70 , Issue.350 , pp. 320-328
    • Geisser, S.1
  • 29
    • 84943709252 scopus 로고
    • Probable inference, the law of succession, and statistical inference
    • W. H. Kruskal and W. A. Wallis. Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 47(260):583-621, 1952.
    • (1952) Journal of the American Statistical Association , vol.47 , Issue.260 , pp. 583-621
    • Kruskal, W.H.1    Wallis, W.A.2
  • 30
    • 0001923944 scopus 로고
    • Hoeffding races: Accelerating model selection search for classification and function approximation
    • O. Maron and A. W. Moore. Hoeffding races: Accelerating model selection search for classification and function approximation. In Advances in Neural Information Processing Systems 6, pages 59-66, 1994.
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 59-66
    • Maron, O.1    Moore, A.W.2
  • 31
    • 0031069121 scopus 로고    scopus 로고
    • The racing algorithm: Model selection for lazy learners
    • O. Maron and A. W. Moore. The racing algorithm: Model selection for lazy learners. Artificial Intelligence Review, 11:193-225, 1997.
    • (1997) Artificial Intelligence Review , vol.11 , pp. 193-225
    • Maron, O.1    Moore, A.W.2
  • 32
    • 0009155205 scopus 로고
    • Repeated significance tests on accumulating data when the null hypothesis is not true
    • C. K. McPherson and P. Armitage. Repeated significance tests on accumulating data when the null hypothesis is not true. Journal of the Royal Statistical Society. Series A, 134(1):15-25, 1971.
    • (1971) Journal of the Royal Statistical Society. Series A , vol.134 , Issue.1 , pp. 15-25
    • McPherson, C.K.1    Armitage, P.2
  • 35
    • 0002128914 scopus 로고
    • Handbook of Social Psychology
    • chapter, Addison-Wesley, 2nd edition
    • F. Mosteller and J. W. Tukey. Handbook of Social Psychology, volume 2, chapter Data analysis, including statistics, pages 80-203. Addison-Wesley, 2nd edition, 1968.
    • (1968) Data Analysis, Including Statistics , vol.2 , pp. 80-203
    • Mosteller, F.1    Tukey, J.W.2
  • 39
    • 84962241822 scopus 로고    scopus 로고
    • Rapid learning with stochastic focus of attention
    • abs/1105.0382
    • R. Pelossof and Z. Ying. Rapid learning with stochastic focus of attention. Computing Research Repository, abs/1105.0382, 2011.
    • (2011) Computing Research Repository
    • Pelossof, R.1    Ying, Z.2
  • 43
    • 0037749769 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • S. Smale and D.-X. Zhou. Estimating the approximation error in learning theory. Analysis and Applications, 1(1):1-25, 2003.
    • (2003) Analysis and Applications , vol.1 , Issue.1 , pp. 1-25
    • Smale, S.1    Zhou, D.-X.2
  • 45
    • 1942454634 scopus 로고
    • Some new closed sequential designs for clinical trials
    • C. C. Spicer. Some new closed sequential designs for clinical trials. Biometrics, 18(2):203-211, 1962.
    • (1962) Biometrics , vol.18 , Issue.2 , pp. 203-211
    • Spicer, C.C.1
  • 47
    • 34247197035 scopus 로고    scopus 로고
    • Fast rates for support vector machines using Gaussian kernels
    • I. Steinwart and C. Scovel. Fast rates for support vector machines using Gaussian kernels. Annals of Statistics, 35:575-607, 2007.
    • (2007) Annals of Statistics , vol.35 , pp. 575-607
    • Steinwart, I.1    Scovel, C.2
  • 48
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B, 36(2):111-147, 1974.
    • (1974) Journal of the Royal Statistical Society. Series B , vol.36 , Issue.2 , pp. 111-147
    • Stone, M.1
  • 53
    • 0000193326 scopus 로고
    • Optimum character of the sequential probability ratio test
    • A. Wald and J. Wolfowitz. Optimum character of the sequential probability ratio test. The Annals of Mathematical Statistics, 19(3):326-339, 1948.
    • (1948) The Annals of Mathematical Statistics , vol.19 , Issue.3 , pp. 326-339
    • Wald, A.1    Wolfowitz, J.2
  • 55
    • 84946650481 scopus 로고
    • Probable inference, the law of succession, and statistical inference
    • E. B. Wilson. Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 22(158):209-212, 1927.
    • (1927) Journal of the American Statistical Association , vol.22 , Issue.158 , pp. 209-212
    • Wilson, E.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.