메뉴 건너뛰기




Volumn 115, Issue 25, 2018, Pages E5716-E5725

Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning

Author keywords

Artificial intelligence; Camera trap images; Deep learning; Deep neural networks; Wildlife ecology

Indexed keywords

ANIMAL BEHAVIOR; ANIMAL TRAPPING; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; AUTOMATION; COMPUTER ANALYSIS; CONSERVATION BIOLOGY; DEEP LEARNING; DEEP NEURAL NETWORK; INFORMATION PROCESSING; MACHINE LEARNING; NONHUMAN; POPULATION DISPERSAL; PRIORITY JOURNAL; SPECIES CONSERVATION; SPECIES IDENTIFICATION; WILD ANIMAL; WILDLIFE; ALGORITHM; ANIMAL; ECOLOGY; ECOSYSTEM; HUMAN; PHYSIOLOGY; PROCEDURES;

EID: 85048965218     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1719367115     Document Type: Article
Times cited : (793)

References (63)
  • 1
    • 84937632029 scopus 로고    scopus 로고
    • Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna
    • Swanson A, et al. (2015) Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Sci Data 2:150026.
    • (2015) Sci Data , vol.2 , pp. 150026
    • Swanson, A.1
  • 4
    • 0141538000 scopus 로고    scopus 로고
    • Camera trap, line transect census and track surveys: A comparative evaluation
    • Silveira L, Jacomo AT, Diniz-Filho JAF (2003) Camera trap, line transect census and track surveys: A comparative evaluation. Biol Conserv 114:351-355.
    • (2003) Biol Conserv , vol.114 , pp. 351-355
    • Silveira, L.1    Jacomo, A.T.2    Diniz-Filho, J.A.F.3
  • 5
    • 57449101102 scopus 로고    scopus 로고
    • The use of camera-trap data to model habitat use by antelope species in the Udzungwa mountain forests, Tanzania
    • Bowkett AE, Rovero F, Marshall AR (2008) The use of camera-trap data to model habitat use by antelope species in the Udzungwa mountain forests, Tanzania. Afr J Ecol 46:479-487.
    • (2008) Afr J Ecol , vol.46 , pp. 479-487
    • Bowkett, A.E.1    Rovero, F.2    Marshall, A.R.3
  • 6
    • 81955168043 scopus 로고    scopus 로고
    • Data acquisition and management software for camera trap data: A case study from the team network
    • Fegraus EH, et al. (2011) Data acquisition and management software for camera trap data: A case study from the team network. Ecol Inform 6:345-353.
    • (2011) Ecol Inform , vol.6 , pp. 345-353
    • Fegraus, E.H.1
  • 7
    • 84903745529 scopus 로고    scopus 로고
    • Software for minimalistic data management in large camera trap studies
    • Krishnappa YS, Turner WC (2014) Software for minimalistic data management in large camera trap studies. Ecol Inform 24:11-16.
    • (2014) Ecol Inform , vol.24 , pp. 11-16
    • Krishnappa, Y.S.1    Turner, W.C.2
  • 8
    • 84903397441 scopus 로고    scopus 로고
    • A novel method to reduce time investment when processing videos from camera trap studies
    • Swinnen KRR, Reijniers J, Breno M, Leirs H (2014) A novel method to reduce time investment when processing videos from camera trap studies. PLoS One 9:e98881.
    • (2014) PLoS One , vol.9
    • Swinnen, K.R.R.1    Reijniers, J.2    Breno, M.3    Leirs, H.4
  • 9
    • 84999026015 scopus 로고    scopus 로고
    • In the absence of a “landscape of fear”: How lions, hyenas, and cheetahs coexist
    • Swanson A, Arnold T, Kosmala M, Forester J, Packer C (2016) In the absence of a “landscape of fear”: How lions, hyenas, and cheetahs coexist. Ecol Evol 6:8534-8545.
    • (2016) Ecol Evol , vol.6 , pp. 8534-8545
    • Swanson, A.1    Arnold, T.2    Kosmala, M.3    Forester, J.4    Packer, C.5
  • 10
    • 85031508158 scopus 로고    scopus 로고
    • A 'dynamic' landscape of fear: Prey responses to spatiotemporal variations in predation risk across the lunar cycle
    • Palmer MS, Fieberg J, Swanson A, Kosmala M, Packer C (2017) A 'dynamic' landscape of fear: Prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol Lett 20:1364-1373.
    • (2017) Ecol Lett , vol.20 , pp. 1364-1373
    • Palmer, M.S.1    Fieberg, J.2    Swanson, A.3    Kosmala, M.4    Packer, C.5
  • 11
    • 84983002183 scopus 로고    scopus 로고
    • The spatial distribution of African savannah herbivores: Species associations and habitat occupancy in a landscape context
    • Anderson TM, et al. (2016) The spatial distribution of African savannah herbivores: Species associations and habitat occupancy in a landscape context. Phil Trans R Soc B 371:20150314.
    • (2016) Phil Trans R Soc B , vol.371 , pp. 20150314
    • Anderson, T.M.1
  • 12
    • 85042105705 scopus 로고    scopus 로고
    • Giraffe bed and breakfast: Camera traps reveal Tanzanian yellow-billed oxpeckers roosting on their large mammalian hosts
    • Palmer MS, Packer C (2018) Giraffe bed and breakfast: Camera traps reveal Tanzanian yellow-billed oxpeckers roosting on their large mammalian hosts. Afr J Ecol.
    • (2018) Afr J Ecol
    • Palmer, M.S.1    Packer, C.2
  • 14
    • 84964474236 scopus 로고    scopus 로고
    • A generalized approach for producing, quantifying, and validating citizen science data from wildlife images
    • Swanson A, Kosmala M, Lintott C, Packer C (2016) A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conserv Biol 30:520-531.
    • (2016) Conserv Biol , vol.30 , pp. 520-531
    • Swanson, A.1    Kosmala, M.2    Lintott, C.3    Packer, C.4
  • 15
    • 0001201756 scopus 로고
    • Some studies in machine learning using the game of checkers
    • Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3:210-229.
    • (1959) IBM J Res Dev , vol.3 , pp. 210-229
    • Samuel, A.L.1
  • 18
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. J Sensors 2015:1-10.
    • (2015) J Sensors , vol.2015 , pp. 1-10
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 19
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • Springer, New York)
    • Bridle JS (1990) Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. Neurocomputing (Springer, New York), pp 227-236.
    • (1990) Neurocomputing , pp. 227-236
    • Bridle, J.S.1
  • 20
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton G, et al. (2012) Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Proc Mag 29:82-97.
    • (2012) IEEE Signal Proc Mag , vol.29 , pp. 82-97
    • Hinton, G.1
  • 27
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih V, et al. (2015) Human-level control through deep reinforcement learning. Nature 518:529-533.
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1
  • 29
    • 84885928934 scopus 로고    scopus 로고
    • Automated identification of animal species in camera trap images
    • Yu X, et al. (2013) Automated identification of animal species in camera trap images. EURASIP J Image Vide 2013:52.
    • (2013) EURASIP J Image Vide , vol.2013 , pp. 52
    • Yu, X.1
  • 33
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE T Pattern Anal 35:1798-1828.
    • (2013) IEEE T Pattern Anal , vol.35 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 36
    • 84923019397 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
    • Wang H, et al. (2014) Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging 1:034003.
    • (2014) J Med Imaging , vol.1 , pp. 034003
    • Wang, H.1
  • 37
    • 85042359360 scopus 로고    scopus 로고
    • Learning from everyday images enables expert-like diagnosis of retinal diseases
    • Rampasek L, Goldenberg A (2018) Learning from everyday images enables expert-like diagnosis of retinal diseases. Cell 172:893-895.
    • (2018) Cell , vol.172 , pp. 893-895
    • Rampasek, L.1    Goldenberg, A.2
  • 40
    • 85042086529 scopus 로고    scopus 로고
    • De-multiplexing vortex modes in optical communications using transport-based pattern recognition
    • Park SR, et al. (2018) De-multiplexing vortex modes in optical communications using transport-based pattern recognition. Opt Express 26:4004-4022.
    • (2018) Opt Express , vol.26 , pp. 4004-4022
    • Park, S.R.1
  • 44
    • 85007028227 scopus 로고    scopus 로고
    • Animal identification in low quality camera-trap images using very deep convolutional neural networks and confidence thresholds
    • Springer, Cham, Switzerland)
    • Gomez A, Diez G, Salazar A, Diaz A (2016) Animal identification in low quality camera-trap images using very deep convolutional neural networks and confidence thresholds. 2016 International Symposium on Visual Computing (Springer, Cham, Switzerland), pp 747-756.
    • (2016) 2016 International Symposium on Visual Computing , pp. 747-756
    • Gomez, A.1    Diez, G.2    Salazar, A.3    Diaz, A.4
  • 47
    • 1942470793 scopus 로고    scopus 로고
    • Multitask learning
    • Springer, New York)
    • Caruana R (1998) Multitask learning. Learning to Learn (Springer, New York), pp 95-133.
    • (1998) Learning to Learn , pp. 95-133
    • Caruana, R.1
  • 48
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • Association for Computing Machinery, New York
    • Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. 2008 International Conference on Machine Learning (ICML) (Association for Computing Machinery, New York).
    • (2008) 2008 International Conference on Machine Learning (ICML)
    • Collobert, R.1    Weston, J.2
  • 51
    • 84928534967 scopus 로고    scopus 로고
    • Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
    • Neural Information Processing Systems Foundation, La Jolla, CA
    • Dauphin YN, et al. (2014) Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. 2014 Advances in Neural Information Processing Systems (NIPS) (Neural Information Processing Systems Foundation, La Jolla, CA).
    • (2014) 2014 Advances in Neural Information Processing Systems (NIPS)
    • Dauphin, Y.N.1
  • 55
    • 34748873053 scopus 로고    scopus 로고
    • Multi-label classification: An overview
    • Tsoumakas G, Katakis I (2006) Multi-label classification: An overview. Int J Data Warehous 3:1-13.
    • (2006) Int J Data Warehous , vol.3 , pp. 1-13
    • Tsoumakas, G.1    Katakis, I.2
  • 57
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn 85:333-359.
    • (2011) Mach Learn , vol.85 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 58
    • 84919881041 scopus 로고    scopus 로고
    • Decaf: A deep convolutional activation feature for generic visual recognition
    • Association for Computing Machinery, New York
    • Donahue J, et al. (2014) Decaf: A deep convolutional activation feature for generic visual recognition. 2014 International Conference on Machine Learning (ICML) (Association for Computing Machinery, New York).
    • (2014) 2014 International Conference on Machine Learning (ICML)
    • Donahue, J.1
  • 59
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • Russakovsky O, et al. (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115:211-252.
    • (2015) Int J Comput Vis , vol.115 , pp. 211-252
    • Russakovsky, O.1
  • 61
    • 85083953615 scopus 로고    scopus 로고
    • Active learning for convolutional neural networks: A core-set approach
    • Accessed May 25, 2018
    • Sener O, Savarese S (2018) Active learning for convolutional neural networks: A core-set approach. International Conference on Learning Representations. Available at https://openreview.net/forum?id=H1aIuk-RW. Accessed May 25, 2018.
    • (2018) International Conference on Learning Representations
    • Sener, O.1    Savarese, S.2
  • 62
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • Neural Information Processing Systems Foundation, La Jolla, CA
    • Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: Towards real-time object detection with region proposal networks. 2015 Advances in Neural Information Processing Systems (NIPS) (Neural Information Processing Systems Foundation, La Jolla, CA).
    • (2015) 2015 Advances in Neural Information Processing Systems (NIPS)
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.