메뉴 건너뛰기




Volumn , Issue , 2016, Pages 140-170

Vortex sheet formulations and initial value problems: Analysis and computing

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85048424605     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9781316411155.009     Document Type: Chapter
Times cited : (3)

References (91)
  • 1
    • 0001747831 scopus 로고
    • Singular solutions and ill-posedness for the evolution of vortex sheets
    • Caflisch, R.E., and Orellana, O.F. 1989. Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal., 20(2), 293-307.
    • (1989) SIAM J. Math. Anal. , vol.20 , Issue.2 , pp. 293-307
    • Caflisch, R.E.1    Orellana, O.F.2
  • 2
    • 0038247451 scopus 로고
    • Finite time analyticity for the two- and three-dimensional Kelvin-Helmholtz instability
    • Sulem, C., Sulem, P.-L., Bardos, C., and Frisch, U. 1981. Finite time analyticity for the two- and three-dimensional Kelvin-Helmholtz instability. Comm. Math. Phys., 80(4), 485-516.
    • (1981) Comm. Math. Phys. , vol.80 , Issue.4 , pp. 485-516
    • Sulem, C.1    Sulem, P.-L.2    Bardos, C.3    Frisch, U.4
  • 3
    • 0013229088 scopus 로고
    • Global vortex sheet solutions of Euler equations in the plane
    • Duchon, J., and Robert, R. 1988. Global vortex sheet solutions of Euler equations in the plane. J. Diff. Eq., 73(2), 215-224.
    • (1988) J. Diff. Eq. , vol.73 , Issue.2 , pp. 215-224
    • Duchon, J.1    Robert, R.2
  • 5
    • 84874631547 scopus 로고    scopus 로고
    • Temporal boundary value problems in interfacial fluid dynamics
    • Milgrom, T., and Ambrose, D.M. 2013. Temporal boundary value problems in interfacial fluid dynamics. Appl. Anal., 92(5), 922-948.
    • (2013) Appl. Anal. , vol.92 , Issue.5 , pp. 922-948
    • Milgrom, T.1    Ambrose, D.M.2
  • 6
    • 84885390314 scopus 로고    scopus 로고
    • Duchon-Robert solutions for the Rayleigh-Taylor and Muskat problems
    • Beck, T., Sosoe, P., and Wong, P. 2014. Duchon-Robert solutions for the Rayleigh-Taylor and Muskat problems. J. Diff. Eq., 256(1), 206-222.
    • (2014) J. Diff. Eq. , vol.256 , Issue.1 , pp. 206-222
    • Beck, T.1    Sosoe, P.2    Wong, P.3
  • 7
    • 17044418131 scopus 로고    scopus 로고
    • On 2D Rayleigh-Taylor instabilities
    • Kamotski, V., and Lebeau, G. 2005. On 2D Rayleigh-Taylor instabilities. Asymptot. Anal., 42(1-2), 1-27.
    • (2005) Asymptot. Anal. , vol.42 , Issue.1-2 , pp. 1-27
    • Kamotski, V.1    Lebeau, G.2
  • 8
    • 17044425556 scopus 로고    scopus 로고
    • Régularité du probl`eme de Kelvin-Helmholtz pour l’équation d’Euler 2d
    • electronic). A tribute to J. L. Lions
    • Lebeau, G. 2002. Régularité du probl`eme de Kelvin-Helmholtz pour l’équation d’Euler 2d. ESAIM Control Optim. Calc. Var., 8, 801-825 (electronic). A tribute to J. L. Lions.
    • (2002) ESAIM Control Optim. Calc. Var. , vol.8 , pp. 801-825
    • Lebeau, G.1
  • 9
    • 33745626744 scopus 로고    scopus 로고
    • Mathematical analysis of vortex sheets
    • Wu, S. 2006. Mathematical analysis of vortex sheets. Comm. Pure Appl. Math., 59(8), 1065-1206.
    • (2006) Comm. Pure Appl. Math. , vol.59 , Issue.8 , pp. 1065-1206
    • Wu, S.1
  • 10
    • 0000306561 scopus 로고
    • The Cauchy-Poisson problem
    • Nalimov, V.I. 1974. The Cauchy-Poisson problem. Dinamika Splošn. Sredy, 104-210, 254.
    • (1974) Dinamika Splošn. Sredy , vol.104-210 , pp. 254
    • Nalimov, V.I.1
  • 11
    • 85009585833 scopus 로고
    • Gravity waves on the free surface of an incompressible perfect fluid of finite depth
    • Yosihara, H. 1982. Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst.Math. Sci., 18(1), 49-96.
    • (1982) Publ. Res. Inst.Math. Sci. , vol.18 , Issue.1 , pp. 49-96
    • Yosihara, H.1
  • 12
    • 0001688084 scopus 로고
    • An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits
    • Craig, W. 1985. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations, 10(8), 787-1003.
    • (1985) Comm. Partial Differential Equations , vol.10 , Issue.8 , pp. 787-1003
    • Craig, W.1
  • 13
    • 0031506263 scopus 로고    scopus 로고
    • Well-posedness in Sobolev spaces of the full water wave problem in 2-D
    • Wu, S. 1997. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math., 130(1), 39-72.
    • (1997) Invent. Math. , vol.130 , Issue.1 , pp. 39-72
    • Wu, S.1
  • 14
    • 0033446356 scopus 로고    scopus 로고
    • Well-posedness in Sobolev spaces of the full water wave problem in 3-D
    • Wu, S. 1999. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc., 12(2), 445-495.
    • (1999) J. Amer. Math. Soc. , vol.12 , Issue.2 , pp. 445-495
    • Wu, S.1
  • 15
    • 84908174056 scopus 로고    scopus 로고
    • On the Cauchy problem for gravity water waves
    • Alazard, T., Burq, N., and Zuily, C. 2014. On the Cauchy problem for gravity water waves. Invent. Math., 198(1), 71-163.
    • (2014) Invent. Math. , vol.198 , Issue.1 , pp. 71-163
    • Alazard, T.1    Burq, N.2    Zuily, C.3
  • 16
    • 26944460000 scopus 로고    scopus 로고
    • The zero surface tension limit of two-dimensional water waves
    • Ambrose, D.M., and Masmoudi, N. 2005. The zero surface tension limit of two-dimensional water waves. Comm. Pure Appl. Math., 58(10), 1287-1315.
    • (2005) Comm. Pure Appl. Math. , vol.58 , Issue.10 , pp. 1287-1315
    • Ambrose, D.M.1    Masmoudi, N.2
  • 17
    • 67249144683 scopus 로고    scopus 로고
    • The zero surface tension limit of three-dimensional water waves
    • Ambrose, D.M., and Masmoudi, N. 2009. The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J., 58(2), 479-521.
    • (2009) Indiana Univ. Math. J. , vol.58 , Issue.2 , pp. 479-521
    • Ambrose, D.M.1    Masmoudi, N.2
  • 18
    • 70350325132 scopus 로고    scopus 로고
    • Interface evolution: Water waves in 2-D
    • Córdoba, A., Córdoba, D., and Gancedo, F. 2010. Interface evolution: water waves in 2-D. Adv. Math., 223(1), 120-173.
    • (2010) Adv. Math. , vol.223 , Issue.1 , pp. 120-173
    • Córdoba, A.1    Córdoba, D.2    Gancedo, F.3
  • 19
    • 22544482964 scopus 로고    scopus 로고
    • Well-posedness of the water-waves equations
    • electronic
    • Lannes, D. 2005. Well-posedness of the water-waves equations. J. Amer. Math. Soc., 18(3), 605-654 (electronic).
    • (2005) J. Amer. Math. Soc. , vol.18 , Issue.3 , pp. 605-654
    • Lannes, D.1
  • 20
    • 84871605936 scopus 로고    scopus 로고
    • Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI. Mathematical analysis and asymptotics
    • Lannes, D. 2013. The water waves problem. Mathematical Surveys and Monographs, vol. 188. American Mathematical Society, Providence, RI. Mathematical analysis and asymptotics.
    • (2013) The water waves problem. , vol.188
    • Lannes, D.1
  • 21
    • 0032136390 scopus 로고    scopus 로고
    • On the Cauchy problem for a capillary drop. I. Irrotational motion
    • Beyer, K., and Günther, M. 1998. On the Cauchy problem for a capillary drop. I. Irrotational motion. Math. Methods Appl. Sci., 21(12), 1149-1183.
    • (1998) Math. Methods Appl. Sci. , vol.21 , Issue.12 , pp. 1149-1183
    • Beyer, K.1    Günther, M.2
  • 22
    • 1342277839 scopus 로고    scopus 로고
    • Well-posedness of the initial value problem for capillary-gravity waves
    • Iguchi, T. 2001. Well-posedness of the initial value problem for capillary-gravity waves. Funkcial. Ekvac., 44(2), 219-241.
    • (2001) Funkcial. Ekvac. , vol.44 , Issue.2 , pp. 219-241
    • Iguchi, T.1
  • 23
    • 0000375767 scopus 로고
    • Capillary-gravity waves for an incompressible ideal fluid
    • Yosihara, H. 1983. Capillary-gravity waves for an incompressible ideal fluid. J. Math. Kyoto Univ., 23(4), 649-694.
    • (1983) J. Math. Kyoto Univ. , vol.23 , Issue.4 , pp. 649-694
    • Yosihara, H.1
  • 24
    • 34548285975 scopus 로고    scopus 로고
    • Regularization of the Kelvin-Helmholtz instability by surface tension
    • Ambrose, D.M. 2007 a. Regularization of the Kelvin-Helmholtz instability by surface tension. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365(1858), 2253-2266.
    • (2007) Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , vol.365 , Issue.1858 , pp. 2253-2266
    • Ambrose, D.M.1
  • 25
    • 0031522531 scopus 로고    scopus 로고
    • On the two-phase free boundary problem for two-dimensional water waves
    • Iguchi, T., Tanaka, N., and Tani, A. 1997. On the two-phase free boundary problem for two-dimensional water waves. Math. Ann., 309(2), 199-223.
    • (1997) Math. Ann. , vol.309 , Issue.2 , pp. 199-223
    • Iguchi, T.1    Tanaka, N.2    Tani, A.3
  • 26
    • 1342266714 scopus 로고    scopus 로고
    • Well-posedness of vortex sheets with surface tension
    • electronic
    • Ambrose, D.M. 2003.Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal., 35(1), 211-244 (electronic).
    • (2003) SIAM J. Math. Anal. , vol.35 , Issue.1 , pp. 211-244
    • Ambrose, D.M.1
  • 27
    • 34547194744 scopus 로고    scopus 로고
    • Well-posedness of 3D vortex sheets with surface tension
    • Ambrose, D.M., and Masmoudi, N. 2007. Well-posedness of 3D vortex sheets with surface tension. Commun. Math. Sci., 5(2), 391-430.
    • (2007) Commun. Math. Sci. , vol.5 , Issue.2 , pp. 391-430
    • Ambrose, D.M.1    Masmoudi, N.2
  • 28
    • 71549133352 scopus 로고    scopus 로고
    • Well-posedness of the water-wave problem with surface tension
    • Ming, M., and Zhang, Z. 2009. Well-posedness of the water-wave problem with surface tension. J. Math. Pures Appl. (9), 92(5), 429-455.
    • (2009) J. Math. Pures Appl. (9) , vol.92 , Issue.5 , pp. 429-455
    • Ming, M.1    Zhang, Z.2
  • 29
    • 0008283862 scopus 로고
    • Removing the stiffness from interfacial flows with surface tension
    • Hou, T.Y., Lowengrub, J.S., and Shelley, M.J. 1994. Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys., 114(2), 312-338.
    • (1994) J. Comput. Phys. , vol.114 , Issue.2 , pp. 312-338
    • Hou, T.Y.1    Lowengrub, J.S.2    Shelley, M.J.3
  • 30
    • 0030870172 scopus 로고    scopus 로고
    • The long-time motion of vortex sheets with surface tension
    • Hou, T.Y., Lowengrub, J.S., and Shelley, M.J. 1997. The long-time motion of vortex sheets with surface tension. Phys. Fluids, 9(7), 1933-1954.
    • (1997) Phys. Fluids , vol.9 , Issue.7 , pp. 1933-1954
    • Hou, T.Y.1    Lowengrub, J.S.2    Shelley, M.J.3
  • 31
    • 16644399272 scopus 로고    scopus 로고
    • Well-posedness of two-phase Hele-Shaw flow without surface tension
    • Ambrose, D.M. 2004. Well-posedness of two-phase Hele-Shaw flow without surface tension. European J. Appl. Math., 15(5), 597-607.
    • (2004) European J. Appl. Math. , vol.15 , Issue.5 , pp. 597-607
    • Ambrose, D.M.1
  • 32
    • 78049501969 scopus 로고    scopus 로고
    • Strichartz estimates for the water-wave problem with surface tension
    • Christianson, H., Hur, V.M., and Staffilani, G. 2010. Strichartz estimates for the water-wave problem with surface tension. Comm. Partial Differential Equations, 35(12), 2195-2252.
    • (2010) Comm. Partial Differential Equations , vol.35 , Issue.12 , pp. 2195-2252
    • Christianson, H.1    Hur, V.M.2    Staffilani, G.3
  • 33
    • 78751624212 scopus 로고    scopus 로고
    • Interface evolution: The Hele-Shaw and Muskat problems
    • Córdoba, A., Córdoba, D., and Gancedo, F. 2011. Interface evolution: the Hele-Shaw and Muskat problems. Ann. of Math. (2), 173(1), 477-542.
    • (2011) Ann. of Math. (2) , vol.173 , Issue.1 , pp. 477-542
    • Córdoba, A.1    Córdoba, D.2    Gancedo, F.3
  • 34
    • 84355162870 scopus 로고    scopus 로고
    • Validity of the Korteweg-de Vries approximation for the two-dimensional water wave problem in the arc length formulation
    • Düll, W.-P. 2012. Validity of the Korteweg-de Vries approximation for the two-dimensional water wave problem in the arc length formulation. Comm. Pure Appl. Math., 65(3), 381-429.
    • (2012) Comm. Pure Appl. Math. , vol.65 , Issue.3 , pp. 381-429
    • Düll, W.-P.1
  • 35
    • 33846818718 scopus 로고    scopus 로고
    • Dynamics near unstable, interfacial fluids
    • Guo, Y., Hallstrom, C., and Spirn, D. 2007. Dynamics near unstable, interfacial fluids. Comm. Math. Phys., 270(3), 635-689.
    • (2007) Comm. Math. Phys. , vol.270 , Issue.3 , pp. 635-689
    • Guo, Y.1    Hallstrom, C.2    Spirn, D.3
  • 36
    • 79952297657 scopus 로고    scopus 로고
    • Global existence for a translating near-circular Hele-Shaw bubble with surface tension
    • Ye, J., and Tanveer, S. 2011. Global existence for a translating near-circular Hele-Shaw bubble with surface tension. SIAM J. Math. Anal., 43(1), 457-506.
    • (2011) SIAM J. Math. Anal. , vol.43 , Issue.1 , pp. 457-506
    • Ye, J.1    Tanveer, S.2
  • 37
    • 84858827298 scopus 로고    scopus 로고
    • Global solutions for a two-phase Hele-Shaw bubble for a near-circular initial shape
    • Ye, J., and Tanveer, S. 2012. Global solutions for a two-phase Hele-Shaw bubble for a near-circular initial shape. Complex Var. Elliptic Equ., 57(1), 23-61.
    • (2012) Complex Var. Elliptic Equ. , vol.57 , Issue.1 , pp. 23-61
    • Ye, J.1    Tanveer, S.2
  • 38
    • 46649112515 scopus 로고    scopus 로고
    • Well-posedness of two-phase Darcy flow in 3D
    • Ambrose, D.M. 2007 b. Well-posedness of two-phase Darcy flow in 3D. Quart. Appl. Math., 65(1), 189-203.
    • (2007) Quart. Appl. Math. , vol.65 , Issue.1 , pp. 189-203
    • Ambrose, D.M.1
  • 39
    • 84882688666 scopus 로고    scopus 로고
    • Porous media: The Muskat problem in three dimensions
    • Córdoba, A., Córdoba, D., and Gancedo, F. 2013. Porous media: the Muskat problem in three dimensions. Anal. PDE, 6(2), 447-497.
    • (2013) Anal. PDE , vol.6 , Issue.2 , pp. 447-497
    • Córdoba, A.1    Córdoba, D.2    Gancedo, F.3
  • 40
    • 84868097332 scopus 로고    scopus 로고
    • Well-posedness of hydrodynamics on the moving elastic surface
    • Wang, W., Zhang, P., and Zhang, Z. 2012. Well-posedness of hydrodynamics on the moving elastic surface. Arch. Ration. Mech. Anal., 206(3), 953-995.
    • (2012) Arch. Ration. Mech. Anal. , vol.206 , Issue.3 , pp. 953-995
    • Wang, W.1    Zhang, P.2    Zhang, Z.3
  • 41
    • 0013315837 scopus 로고    scopus 로고
    • Convergence of a boundary integral method for 3-D water waves
    • Hou, T.Y., and Zhang, P. 2002. Convergence of a boundary integral method for 3-D water waves. Discrete Contin. Dyn. Syst. Ser. B, 2(1), 1-34.
    • (2002) Discrete Contin. Dyn. Syst. Ser. B , vol.2 , Issue.1 , pp. 1-34
    • Hou, T.Y.1    Zhang, P.2
  • 42
    • 0035923856 scopus 로고    scopus 로고
    • The nonlinear evolution of vortex sheets with surface tension in axisymmetric flows
    • Nie, Q. 2001. The nonlinear evolution of vortex sheets with surface tension in axisymmetric flows. J. Comput. Phys., 174(1), 438-459.
    • (2001) J. Comput. Phys. , vol.174 , Issue.1 , pp. 438-459
    • Nie, Q.1
  • 43
    • 84858441196 scopus 로고    scopus 로고
    • A non-stiff boundary integral method for 3D porous media flow with surface tension
    • Ambrose, D.M., and Siegel, M. 2012. A non-stiff boundary integral method for 3D porous media flow with surface tension. Math. Comput. Simulation, 82(6), 968-983.
    • (2012) Math. Comput. Simulation , vol.82 , Issue.6 , pp. 968-983
    • Ambrose, D.M.1    Siegel, M.2
  • 44
    • 84877834220 scopus 로고    scopus 로고
    • A small-scale decomposition for 3D boundary integral computations with surface tension
    • Ambrose, D.M., Siegel, M., and Tlupova, S. 2013 b. A small-scale decomposition for 3D boundary integral computations with surface tension. J. Comput. Phys., 247, 168-191.
    • (2013) J. Comput. Phys. , vol.247 , pp. 168-191
    • Ambrose, D.M.1    Siegel, M.2    Tlupova, S.3
  • 45
    • 55749106935 scopus 로고    scopus 로고
    • On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity
    • Cheng, C.-H.A., Coutand, D., and Shkoller, S. 2008. On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity. Comm. Pure Appl. Math., 61(12), 1715-1752.
    • (2008) Comm. Pure Appl. Math. , vol.61 , Issue.12 , pp. 1715-1752
    • Cheng, C.-H.A.1    Coutand, D.2    Shkoller, S.3
  • 46
    • 34548446988 scopus 로고    scopus 로고
    • Well-posedness of the free-surface incompressible Euler equations with or without surface tension
    • Coutand, D., and Shkoller, S. 2007. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc., 20(3), 829-930.
    • (2007) J. Amer. Math. Soc. , vol.20 , Issue.3 , pp. 829-930
    • Coutand, D.1    Shkoller, S.2
  • 47
    • 26044448758 scopus 로고    scopus 로고
    • Well-posedness for the motion of an incompressible liquid with free surface boundary
    • Lindblad, H. 2005. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. (2), 162(1), 109-194.
    • (2005) Ann. of Math. (2) , vol.162 , Issue.1 , pp. 109-194
    • Lindblad, H.1
  • 48
    • 0036951682 scopus 로고    scopus 로고
    • Free boundary problem for an incompressible ideal fluid with surface tension
    • Ogawa, M., and Tani, A. 2002. Free boundary problem for an incompressible ideal fluid with surface tension. Math. Models Methods Appl. Sci., 12(12), 1725-1740.
    • (2002) Math. Models Methods Appl. Sci. , vol.12 , Issue.12 , pp. 1725-1740
    • Ogawa, M.1    Tani, A.2
  • 49
    • 25644455336 scopus 로고    scopus 로고
    • On the three-dimensional Euler equations with a free boundary subject to surface tension
    • Schweizer, B. 2005. On the three-dimensional Euler equations with a free boundary subject to surface tension. Ann. Inst. H. Poincaré Anal. Non Linéaire, 22(6), 753-781.
    • (2005) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.22 , Issue.6 , pp. 753-781
    • Schweizer, B.1
  • 50
    • 78751704957 scopus 로고    scopus 로고
    • Local well-posedness for fluid interface problems
    • Shatah, J., and Zeng, C. 2011. Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal., 199(2), 653-705.
    • (2011) Arch. Ration. Mech. Anal. , vol.199 , Issue.2 , pp. 653-705
    • Shatah, J.1    Zeng, C.2
  • 51
    • 52349109943 scopus 로고    scopus 로고
    • On the free boundary problem of three-dimensional incompressible Euler equations
    • Zhang, P., and Zhang, Z. 2008. On the free boundary problem of three-dimensional incompressible Euler equations. Comm. Pure Appl. Math., 61(7), 877-940.
    • (2008) Comm. Pure Appl. Math. , vol.61 , Issue.7 , pp. 877-940
    • Zhang, P.1    Zhang, Z.2
  • 52
    • 34548424025 scopus 로고    scopus 로고
    • On the local wellposedness of 3-D water wave problem with vorticity
    • Zhang, P., and Zhang, Z.-F. 2007. On the local wellposedness of 3-D water wave problem with vorticity. Sci. China Ser. A, 50(8), 1065-1077.
    • (2007) Sci. China Ser. A , vol.50 , Issue.8 , pp. 1065-1077
    • Zhang, P.1    Zhang, Z.-F.2
  • 55
    • 67650725448 scopus 로고    scopus 로고
    • Global solutions for the gravity water waves equation in dimension 3
    • Germain, P., Masmoudi, N., and Shatah, J. 2009. Global solutions for the gravity water waves equation in dimension 3. C. R. Math. Acad. Sci. Paris, 347(15-16), 897-902.
    • (2009) C. R. Math. Acad. Sci. Paris , vol.347 , Issue.15-16 , pp. 897-902
    • Germain, P.1    Masmoudi, N.2    Shatah, J.3
  • 56
    • 84857870242 scopus 로고    scopus 로고
    • Global solutions for the gravity water waves equation in dimension 3
    • Germain, P., Masmoudi, N., and Shatah, J. 2012. Global solutions for the gravity water waves equation in dimension 3. Ann. of Math. (2), 175(2), 691-754.
    • (2012) Ann. of Math. (2) , vol.175 , Issue.2 , pp. 691-754
    • Germain, P.1    Masmoudi, N.2    Shatah, J.3
  • 62
    • 67650433790 scopus 로고    scopus 로고
    • Almost global wellposedness of the 2-D full water wave problem
    • Wu, S. 2009. Almost global wellposedness of the 2-D full water wave problem. Invent. Math., 177(1), 45-135.
    • (2009) Invent. Math. , vol.177 , Issue.1 , pp. 45-135
    • Wu, S.1
  • 63
    • 79952989811 scopus 로고    scopus 로고
    • Global wellposedness of the 3-D full water wave problem
    • Wu, S. 2011. Global wellposedness of the 3-D full water wave problem. Invent. Math., 184(1), 125-220.
    • (2011) Invent. Math. , vol.184 , Issue.1 , pp. 125-220
    • Wu, S.1
  • 66
    • 84891662791 scopus 로고    scopus 로고
    • On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations
    • Coutand, D., and Shkoller, S. 2014 a. On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations. Comm. Math. Phys., 325(1), 143-183.
    • (2014) Comm. Math. Phys. , vol.325 , Issue.1 , pp. 143-183
    • Coutand, D.1    Shkoller, S.2
  • 69
    • 84892595836 scopus 로고    scopus 로고
    • No-splash theorems for fluid interfaces
    • Fefferman, C.L. 2014. No-splash theorems for fluid interfaces. Proc. Natl. Acad. Sci. USA, 111(2), 573-574.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , Issue.2 , pp. 573-574
    • Fefferman, C.L.1
  • 70
    • 85048397170 scopus 로고    scopus 로고
    • Cauchy problem and Kato smoothing for water waves with surface tension. Pages 1-14 of: Harmonic analysis and nonlinear partial differential equations. RIMS Kokŷuroku Bessatsu, B18
    • RIMS), Kyoto
    • Alazard, T., Burq, N., and Zuily, C. 2010. Cauchy problem and Kato smoothing for water waves with surface tension. Pages 1-14 of: Harmonic analysis and nonlinear partial differential equations. RIMS Kokŷuroku Bessatsu, B18. Res. Inst. Math. Sci. (RIMS), Kyoto.
    • (2010) Res. Inst. Math. Sci.
    • Alazard, T.1    Burq, N.2    Zuily, C.3
  • 71
    • 79959880152 scopus 로고    scopus 로고
    • On the water-wave equations with surface tension
    • Alazard, T., Burq, N., and Zuily, C. 2011. On the water-wave equations with surface tension. Duke Math. J., 158(3), 413-499.
    • (2011) Duke Math. J. , vol.158 , Issue.3 , pp. 413-499
    • Alazard, T.1    Burq, N.2    Zuily, C.3
  • 72
    • 60449104603 scopus 로고    scopus 로고
    • Local smoothing effects for the water-wave problem with surface tension
    • Christianson, H., Hur, V.M., and Staffilani, G. 2009. Local smoothing effects for the water-wave problem with surface tension. C. R. Math. Acad. Sci. Paris, 347(3-4), 159-162.
    • (2009) C. R. Math. Acad. Sci. Paris , vol.347 , Issue.3-4 , pp. 159-162
    • Christianson, H.1    Hur, V.M.2    Staffilani, G.3
  • 74
    • 0004128127 scopus 로고
    • Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York
    • Saffman, P.G. 1992. Vortex dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York.
    • (1992) Vortex dynamics.
    • Saffman, P.G.1
  • 75
    • 0004259252 scopus 로고    scopus 로고
    • Cambridge Texts in Applied Mathematics, Cambridge: Cambridge University Press
    • Majda, A.J., and Bertozzi, A.L. 2002. Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, vol. 27. Cambridge: Cambridge University Press.
    • (2002) Vorticity and incompressible flow. , vol.27
    • Majda, A.J.1    Bertozzi, A.L.2
  • 76
    • 84963450929 scopus 로고
    • Lagrangian theory for 3D vortex sheets with axial or helical symmetry
    • Caflisch, R.E., and Li, X.-F. 1992. Lagrangian theory for 3D vortex sheets with axial or helical symmetry. Transport Theory Statist. Phys., 21(4-6), 559-578.
    • (1992) Transport Theory Statist. Phys. , vol.21 , Issue.4-6 , pp. 559-578
    • Caflisch, R.E.1    Li, X.-F.2
  • 77
    • 0004026391 scopus 로고
    • Dover Publications, Inc., New York. Boundary problems of function theory and their application to mathematical physics, Translated from the second (1946) Russian edition and with a preface by J. R. M. Radok, Corrected reprint of the 1953 English translation
    • Muskhelishvili, N.I. 1992. Singular integral equations. Dover Publications, Inc., New York. Boundary problems of function theory and their application to mathematical physics, Translated from the second (1946) Russian edition and with a preface by J. R. M. Radok, Corrected reprint of the 1953 English translation.
    • (1992) Singular integral equations.
    • Muskhelishvili, N.I.1
  • 79
    • 0004186403 scopus 로고
    • Reading, MA: Addison-Wesley Publishing Company Advanced Book Program
    • Helson, H. 1983. Harmonic analysis. Reading, MA: Addison-Wesley Publishing Company Advanced Book Program.
    • (1983) Harmonic analysis.
    • Helson, H.1
  • 80
    • 84990576574 scopus 로고
    • Growth rates for the linearized motion of fluid interfaces away from equilibrium
    • Beale, J.T., Hou, T.Y., and Lowengrub, J.S. 1993. Growth rates for the linearized motion of fluid interfaces away from equilibrium. Comm. Pure Appl. Math., 46(9), 1269-1301.
    • (1993) Comm. Pure Appl. Math. , vol.46 , Issue.9 , pp. 1269-1301
    • Beale, J.T.1    Hou, T.Y.2    Lowengrub, J.S.3
  • 81
    • 0001737039 scopus 로고
    • Implicit-explicit methods for time-dependent partial differential equations
    • Ascher, U.M., Ruuth, S.J., and Wetton, B.T.R. 1995. Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal., 32(3), 797-823.
    • (1995) SIAM J. Numer. Anal. , vol.32 , Issue.3 , pp. 797-823
    • Ascher, U.M.1    Ruuth, S.J.2    Wetton, B.T.R.3
  • 82
    • 70349186572 scopus 로고    scopus 로고
    • Singularity formation in a model for the vortex sheet with surface tension
    • Ambrose, D.M. 2009. Singularity formation in a model for the vortex sheet with surface tension. Math. Comput. Simulation, 80(1), 102-111.
    • (2009) Math. Comput. Simulation , vol.80 , Issue.1 , pp. 102-111
    • Ambrose, D.M.1
  • 83
    • 84894118965 scopus 로고    scopus 로고
    • Computing time-periodic solutions of a model for the vortex sheet with surface tension
    • To appear
    • Ambrose, D.M., Kondrla, M., and Valle, M. 2013 a. Computing time-periodic solutions of a model for the vortex sheet with surface tension. Quart. Appl. Math. To appear.
    • (2013) Quart. Appl. Math.
    • Ambrose, D.M.1    Kondrla, M.2    Valle, M.3
  • 84
    • 84896374602 scopus 로고    scopus 로고
    • The zero surface tension limit of two-dimensional interfacial Darcy flow
    • Ambrose, D.M. 2014. The zero surface tension limit of two-dimensional interfacial Darcy flow. J. Math. Fluid Mech., 16(1), 105-143.
    • (2014) J. Math. Fluid Mech. , vol.16 , Issue.1 , pp. 105-143
    • Ambrose, D.M.1
  • 86
    • 0020191249 scopus 로고
    • Generalized vortex methods for free-surface flow problems
    • Baker, G.R., Meiron, D.I., and Orszag, S.A. 1982. Generalized vortex methods for free-surface flow problems. J. Fluid Mech., 123, 477-501.
    • (1982) J. Fluid Mech. , vol.123 , pp. 477-501
    • Baker, G.R.1    Meiron, D.I.2    Orszag, S.A.3
  • 87
    • 0011555392 scopus 로고
    • The equations of motion of a perfect fluid with free boundary are not well posed
    • Ebin, D.G. 1987. The equations of motion of a perfect fluid with free boundary are not well posed. Comm. Partial Differential Equations, 12(10), 1175-1201.
    • (1987) Comm. Partial Differential Equations , vol.12 , Issue.10 , pp. 1175-1201
    • Ebin, D.G.1
  • 88
    • 4244168693 scopus 로고    scopus 로고
    • Singular perturbation of smoothly evolving Hele-Shaw solutions
    • Jan
    • Siegel, M., and Tanveer, S. 1996. Singular perturbation of smoothly evolving Hele-Shaw solutions. Phys. Rev. Lett., 76(Jan), 419-422.
    • (1996) Phys. Rev. Lett. , vol.76 , pp. 419-422
    • Siegel, M.1    Tanveer, S.2
  • 89
    • 0030239360 scopus 로고    scopus 로고
    • Singular effects of surface tension in evolving Hele-Shaw flows
    • Siegel, M., Tanveer, S., and Dai, W.-S. 1996. Singular effects of surface tension in evolving Hele-Shaw flows. J. Fluid Mech., 323, 201-236.
    • (1996) J. Fluid Mech. , vol.323 , pp. 201-236
    • Siegel, M.1    Tanveer, S.2    Dai, W.-S.3
  • 90
    • 0033940025 scopus 로고    scopus 로고
    • The singular perturbation of surface tension in Hele-Shaw flows
    • Ceniceros, H.D., and Hou, T.Y. 2000. The singular perturbation of surface tension in Hele-Shaw flows. J. Fluid Mech., 409, 251-272.
    • (2000) J. Fluid Mech. , vol.409 , pp. 251-272
    • Ceniceros, H.D.1    Hou, T.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.