-
1
-
-
0001747831
-
Singular solutions and ill-posedness for the evolution of vortex sheets
-
Caflisch, R.E., and Orellana, O.F. 1989. Singular solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal., 20(2), 293-307.
-
(1989)
SIAM J. Math. Anal.
, vol.20
, Issue.2
, pp. 293-307
-
-
Caflisch, R.E.1
Orellana, O.F.2
-
2
-
-
0038247451
-
Finite time analyticity for the two- and three-dimensional Kelvin-Helmholtz instability
-
Sulem, C., Sulem, P.-L., Bardos, C., and Frisch, U. 1981. Finite time analyticity for the two- and three-dimensional Kelvin-Helmholtz instability. Comm. Math. Phys., 80(4), 485-516.
-
(1981)
Comm. Math. Phys.
, vol.80
, Issue.4
, pp. 485-516
-
-
Sulem, C.1
Sulem, P.-L.2
Bardos, C.3
Frisch, U.4
-
3
-
-
0013229088
-
Global vortex sheet solutions of Euler equations in the plane
-
Duchon, J., and Robert, R. 1988. Global vortex sheet solutions of Euler equations in the plane. J. Diff. Eq., 73(2), 215-224.
-
(1988)
J. Diff. Eq.
, vol.73
, Issue.2
, pp. 215-224
-
-
Duchon, J.1
Robert, R.2
-
5
-
-
84874631547
-
Temporal boundary value problems in interfacial fluid dynamics
-
Milgrom, T., and Ambrose, D.M. 2013. Temporal boundary value problems in interfacial fluid dynamics. Appl. Anal., 92(5), 922-948.
-
(2013)
Appl. Anal.
, vol.92
, Issue.5
, pp. 922-948
-
-
Milgrom, T.1
Ambrose, D.M.2
-
6
-
-
84885390314
-
Duchon-Robert solutions for the Rayleigh-Taylor and Muskat problems
-
Beck, T., Sosoe, P., and Wong, P. 2014. Duchon-Robert solutions for the Rayleigh-Taylor and Muskat problems. J. Diff. Eq., 256(1), 206-222.
-
(2014)
J. Diff. Eq.
, vol.256
, Issue.1
, pp. 206-222
-
-
Beck, T.1
Sosoe, P.2
Wong, P.3
-
7
-
-
17044418131
-
On 2D Rayleigh-Taylor instabilities
-
Kamotski, V., and Lebeau, G. 2005. On 2D Rayleigh-Taylor instabilities. Asymptot. Anal., 42(1-2), 1-27.
-
(2005)
Asymptot. Anal.
, vol.42
, Issue.1-2
, pp. 1-27
-
-
Kamotski, V.1
Lebeau, G.2
-
8
-
-
17044425556
-
Régularité du probl`eme de Kelvin-Helmholtz pour l’équation d’Euler 2d
-
electronic). A tribute to J. L. Lions
-
Lebeau, G. 2002. Régularité du probl`eme de Kelvin-Helmholtz pour l’équation d’Euler 2d. ESAIM Control Optim. Calc. Var., 8, 801-825 (electronic). A tribute to J. L. Lions.
-
(2002)
ESAIM Control Optim. Calc. Var.
, vol.8
, pp. 801-825
-
-
Lebeau, G.1
-
9
-
-
33745626744
-
Mathematical analysis of vortex sheets
-
Wu, S. 2006. Mathematical analysis of vortex sheets. Comm. Pure Appl. Math., 59(8), 1065-1206.
-
(2006)
Comm. Pure Appl. Math.
, vol.59
, Issue.8
, pp. 1065-1206
-
-
Wu, S.1
-
10
-
-
0000306561
-
The Cauchy-Poisson problem
-
Nalimov, V.I. 1974. The Cauchy-Poisson problem. Dinamika Splošn. Sredy, 104-210, 254.
-
(1974)
Dinamika Splošn. Sredy
, vol.104-210
, pp. 254
-
-
Nalimov, V.I.1
-
11
-
-
85009585833
-
Gravity waves on the free surface of an incompressible perfect fluid of finite depth
-
Yosihara, H. 1982. Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst.Math. Sci., 18(1), 49-96.
-
(1982)
Publ. Res. Inst.Math. Sci.
, vol.18
, Issue.1
, pp. 49-96
-
-
Yosihara, H.1
-
12
-
-
0001688084
-
An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits
-
Craig, W. 1985. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations, 10(8), 787-1003.
-
(1985)
Comm. Partial Differential Equations
, vol.10
, Issue.8
, pp. 787-1003
-
-
Craig, W.1
-
13
-
-
0031506263
-
Well-posedness in Sobolev spaces of the full water wave problem in 2-D
-
Wu, S. 1997. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math., 130(1), 39-72.
-
(1997)
Invent. Math.
, vol.130
, Issue.1
, pp. 39-72
-
-
Wu, S.1
-
14
-
-
0033446356
-
Well-posedness in Sobolev spaces of the full water wave problem in 3-D
-
Wu, S. 1999. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc., 12(2), 445-495.
-
(1999)
J. Amer. Math. Soc.
, vol.12
, Issue.2
, pp. 445-495
-
-
Wu, S.1
-
15
-
-
84908174056
-
On the Cauchy problem for gravity water waves
-
Alazard, T., Burq, N., and Zuily, C. 2014. On the Cauchy problem for gravity water waves. Invent. Math., 198(1), 71-163.
-
(2014)
Invent. Math.
, vol.198
, Issue.1
, pp. 71-163
-
-
Alazard, T.1
Burq, N.2
Zuily, C.3
-
16
-
-
26944460000
-
The zero surface tension limit of two-dimensional water waves
-
Ambrose, D.M., and Masmoudi, N. 2005. The zero surface tension limit of two-dimensional water waves. Comm. Pure Appl. Math., 58(10), 1287-1315.
-
(2005)
Comm. Pure Appl. Math.
, vol.58
, Issue.10
, pp. 1287-1315
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
17
-
-
67249144683
-
The zero surface tension limit of three-dimensional water waves
-
Ambrose, D.M., and Masmoudi, N. 2009. The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J., 58(2), 479-521.
-
(2009)
Indiana Univ. Math. J.
, vol.58
, Issue.2
, pp. 479-521
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
18
-
-
70350325132
-
Interface evolution: Water waves in 2-D
-
Córdoba, A., Córdoba, D., and Gancedo, F. 2010. Interface evolution: water waves in 2-D. Adv. Math., 223(1), 120-173.
-
(2010)
Adv. Math.
, vol.223
, Issue.1
, pp. 120-173
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
19
-
-
22544482964
-
Well-posedness of the water-waves equations
-
electronic
-
Lannes, D. 2005. Well-posedness of the water-waves equations. J. Amer. Math. Soc., 18(3), 605-654 (electronic).
-
(2005)
J. Amer. Math. Soc.
, vol.18
, Issue.3
, pp. 605-654
-
-
Lannes, D.1
-
20
-
-
84871605936
-
-
Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI. Mathematical analysis and asymptotics
-
Lannes, D. 2013. The water waves problem. Mathematical Surveys and Monographs, vol. 188. American Mathematical Society, Providence, RI. Mathematical analysis and asymptotics.
-
(2013)
The water waves problem.
, vol.188
-
-
Lannes, D.1
-
21
-
-
0032136390
-
On the Cauchy problem for a capillary drop. I. Irrotational motion
-
Beyer, K., and Günther, M. 1998. On the Cauchy problem for a capillary drop. I. Irrotational motion. Math. Methods Appl. Sci., 21(12), 1149-1183.
-
(1998)
Math. Methods Appl. Sci.
, vol.21
, Issue.12
, pp. 1149-1183
-
-
Beyer, K.1
Günther, M.2
-
22
-
-
1342277839
-
Well-posedness of the initial value problem for capillary-gravity waves
-
Iguchi, T. 2001. Well-posedness of the initial value problem for capillary-gravity waves. Funkcial. Ekvac., 44(2), 219-241.
-
(2001)
Funkcial. Ekvac.
, vol.44
, Issue.2
, pp. 219-241
-
-
Iguchi, T.1
-
23
-
-
0000375767
-
Capillary-gravity waves for an incompressible ideal fluid
-
Yosihara, H. 1983. Capillary-gravity waves for an incompressible ideal fluid. J. Math. Kyoto Univ., 23(4), 649-694.
-
(1983)
J. Math. Kyoto Univ.
, vol.23
, Issue.4
, pp. 649-694
-
-
Yosihara, H.1
-
24
-
-
34548285975
-
Regularization of the Kelvin-Helmholtz instability by surface tension
-
Ambrose, D.M. 2007 a. Regularization of the Kelvin-Helmholtz instability by surface tension. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365(1858), 2253-2266.
-
(2007)
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.365
, Issue.1858
, pp. 2253-2266
-
-
Ambrose, D.M.1
-
25
-
-
0031522531
-
On the two-phase free boundary problem for two-dimensional water waves
-
Iguchi, T., Tanaka, N., and Tani, A. 1997. On the two-phase free boundary problem for two-dimensional water waves. Math. Ann., 309(2), 199-223.
-
(1997)
Math. Ann.
, vol.309
, Issue.2
, pp. 199-223
-
-
Iguchi, T.1
Tanaka, N.2
Tani, A.3
-
26
-
-
1342266714
-
Well-posedness of vortex sheets with surface tension
-
electronic
-
Ambrose, D.M. 2003.Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal., 35(1), 211-244 (electronic).
-
(2003)
SIAM J. Math. Anal.
, vol.35
, Issue.1
, pp. 211-244
-
-
Ambrose, D.M.1
-
27
-
-
34547194744
-
Well-posedness of 3D vortex sheets with surface tension
-
Ambrose, D.M., and Masmoudi, N. 2007. Well-posedness of 3D vortex sheets with surface tension. Commun. Math. Sci., 5(2), 391-430.
-
(2007)
Commun. Math. Sci.
, vol.5
, Issue.2
, pp. 391-430
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
28
-
-
71549133352
-
Well-posedness of the water-wave problem with surface tension
-
Ming, M., and Zhang, Z. 2009. Well-posedness of the water-wave problem with surface tension. J. Math. Pures Appl. (9), 92(5), 429-455.
-
(2009)
J. Math. Pures Appl. (9)
, vol.92
, Issue.5
, pp. 429-455
-
-
Ming, M.1
Zhang, Z.2
-
29
-
-
0008283862
-
Removing the stiffness from interfacial flows with surface tension
-
Hou, T.Y., Lowengrub, J.S., and Shelley, M.J. 1994. Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys., 114(2), 312-338.
-
(1994)
J. Comput. Phys.
, vol.114
, Issue.2
, pp. 312-338
-
-
Hou, T.Y.1
Lowengrub, J.S.2
Shelley, M.J.3
-
30
-
-
0030870172
-
The long-time motion of vortex sheets with surface tension
-
Hou, T.Y., Lowengrub, J.S., and Shelley, M.J. 1997. The long-time motion of vortex sheets with surface tension. Phys. Fluids, 9(7), 1933-1954.
-
(1997)
Phys. Fluids
, vol.9
, Issue.7
, pp. 1933-1954
-
-
Hou, T.Y.1
Lowengrub, J.S.2
Shelley, M.J.3
-
31
-
-
16644399272
-
Well-posedness of two-phase Hele-Shaw flow without surface tension
-
Ambrose, D.M. 2004. Well-posedness of two-phase Hele-Shaw flow without surface tension. European J. Appl. Math., 15(5), 597-607.
-
(2004)
European J. Appl. Math.
, vol.15
, Issue.5
, pp. 597-607
-
-
Ambrose, D.M.1
-
32
-
-
78049501969
-
Strichartz estimates for the water-wave problem with surface tension
-
Christianson, H., Hur, V.M., and Staffilani, G. 2010. Strichartz estimates for the water-wave problem with surface tension. Comm. Partial Differential Equations, 35(12), 2195-2252.
-
(2010)
Comm. Partial Differential Equations
, vol.35
, Issue.12
, pp. 2195-2252
-
-
Christianson, H.1
Hur, V.M.2
Staffilani, G.3
-
33
-
-
78751624212
-
Interface evolution: The Hele-Shaw and Muskat problems
-
Córdoba, A., Córdoba, D., and Gancedo, F. 2011. Interface evolution: the Hele-Shaw and Muskat problems. Ann. of Math. (2), 173(1), 477-542.
-
(2011)
Ann. of Math. (2)
, vol.173
, Issue.1
, pp. 477-542
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
34
-
-
84355162870
-
Validity of the Korteweg-de Vries approximation for the two-dimensional water wave problem in the arc length formulation
-
Düll, W.-P. 2012. Validity of the Korteweg-de Vries approximation for the two-dimensional water wave problem in the arc length formulation. Comm. Pure Appl. Math., 65(3), 381-429.
-
(2012)
Comm. Pure Appl. Math.
, vol.65
, Issue.3
, pp. 381-429
-
-
Düll, W.-P.1
-
35
-
-
33846818718
-
Dynamics near unstable, interfacial fluids
-
Guo, Y., Hallstrom, C., and Spirn, D. 2007. Dynamics near unstable, interfacial fluids. Comm. Math. Phys., 270(3), 635-689.
-
(2007)
Comm. Math. Phys.
, vol.270
, Issue.3
, pp. 635-689
-
-
Guo, Y.1
Hallstrom, C.2
Spirn, D.3
-
36
-
-
79952297657
-
Global existence for a translating near-circular Hele-Shaw bubble with surface tension
-
Ye, J., and Tanveer, S. 2011. Global existence for a translating near-circular Hele-Shaw bubble with surface tension. SIAM J. Math. Anal., 43(1), 457-506.
-
(2011)
SIAM J. Math. Anal.
, vol.43
, Issue.1
, pp. 457-506
-
-
Ye, J.1
Tanveer, S.2
-
37
-
-
84858827298
-
Global solutions for a two-phase Hele-Shaw bubble for a near-circular initial shape
-
Ye, J., and Tanveer, S. 2012. Global solutions for a two-phase Hele-Shaw bubble for a near-circular initial shape. Complex Var. Elliptic Equ., 57(1), 23-61.
-
(2012)
Complex Var. Elliptic Equ.
, vol.57
, Issue.1
, pp. 23-61
-
-
Ye, J.1
Tanveer, S.2
-
38
-
-
46649112515
-
Well-posedness of two-phase Darcy flow in 3D
-
Ambrose, D.M. 2007 b. Well-posedness of two-phase Darcy flow in 3D. Quart. Appl. Math., 65(1), 189-203.
-
(2007)
Quart. Appl. Math.
, vol.65
, Issue.1
, pp. 189-203
-
-
Ambrose, D.M.1
-
39
-
-
84882688666
-
Porous media: The Muskat problem in three dimensions
-
Córdoba, A., Córdoba, D., and Gancedo, F. 2013. Porous media: the Muskat problem in three dimensions. Anal. PDE, 6(2), 447-497.
-
(2013)
Anal. PDE
, vol.6
, Issue.2
, pp. 447-497
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
40
-
-
84868097332
-
Well-posedness of hydrodynamics on the moving elastic surface
-
Wang, W., Zhang, P., and Zhang, Z. 2012. Well-posedness of hydrodynamics on the moving elastic surface. Arch. Ration. Mech. Anal., 206(3), 953-995.
-
(2012)
Arch. Ration. Mech. Anal.
, vol.206
, Issue.3
, pp. 953-995
-
-
Wang, W.1
Zhang, P.2
Zhang, Z.3
-
41
-
-
0013315837
-
Convergence of a boundary integral method for 3-D water waves
-
Hou, T.Y., and Zhang, P. 2002. Convergence of a boundary integral method for 3-D water waves. Discrete Contin. Dyn. Syst. Ser. B, 2(1), 1-34.
-
(2002)
Discrete Contin. Dyn. Syst. Ser. B
, vol.2
, Issue.1
, pp. 1-34
-
-
Hou, T.Y.1
Zhang, P.2
-
42
-
-
0035923856
-
The nonlinear evolution of vortex sheets with surface tension in axisymmetric flows
-
Nie, Q. 2001. The nonlinear evolution of vortex sheets with surface tension in axisymmetric flows. J. Comput. Phys., 174(1), 438-459.
-
(2001)
J. Comput. Phys.
, vol.174
, Issue.1
, pp. 438-459
-
-
Nie, Q.1
-
43
-
-
84858441196
-
A non-stiff boundary integral method for 3D porous media flow with surface tension
-
Ambrose, D.M., and Siegel, M. 2012. A non-stiff boundary integral method for 3D porous media flow with surface tension. Math. Comput. Simulation, 82(6), 968-983.
-
(2012)
Math. Comput. Simulation
, vol.82
, Issue.6
, pp. 968-983
-
-
Ambrose, D.M.1
Siegel, M.2
-
44
-
-
84877834220
-
A small-scale decomposition for 3D boundary integral computations with surface tension
-
Ambrose, D.M., Siegel, M., and Tlupova, S. 2013 b. A small-scale decomposition for 3D boundary integral computations with surface tension. J. Comput. Phys., 247, 168-191.
-
(2013)
J. Comput. Phys.
, vol.247
, pp. 168-191
-
-
Ambrose, D.M.1
Siegel, M.2
Tlupova, S.3
-
45
-
-
55749106935
-
On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity
-
Cheng, C.-H.A., Coutand, D., and Shkoller, S. 2008. On the motion of vortex sheets with surface tension in three-dimensional Euler equations with vorticity. Comm. Pure Appl. Math., 61(12), 1715-1752.
-
(2008)
Comm. Pure Appl. Math.
, vol.61
, Issue.12
, pp. 1715-1752
-
-
Cheng, C.-H.A.1
Coutand, D.2
Shkoller, S.3
-
46
-
-
34548446988
-
Well-posedness of the free-surface incompressible Euler equations with or without surface tension
-
Coutand, D., and Shkoller, S. 2007. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc., 20(3), 829-930.
-
(2007)
J. Amer. Math. Soc.
, vol.20
, Issue.3
, pp. 829-930
-
-
Coutand, D.1
Shkoller, S.2
-
47
-
-
26044448758
-
Well-posedness for the motion of an incompressible liquid with free surface boundary
-
Lindblad, H. 2005. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. (2), 162(1), 109-194.
-
(2005)
Ann. of Math. (2)
, vol.162
, Issue.1
, pp. 109-194
-
-
Lindblad, H.1
-
48
-
-
0036951682
-
Free boundary problem for an incompressible ideal fluid with surface tension
-
Ogawa, M., and Tani, A. 2002. Free boundary problem for an incompressible ideal fluid with surface tension. Math. Models Methods Appl. Sci., 12(12), 1725-1740.
-
(2002)
Math. Models Methods Appl. Sci.
, vol.12
, Issue.12
, pp. 1725-1740
-
-
Ogawa, M.1
Tani, A.2
-
49
-
-
25644455336
-
On the three-dimensional Euler equations with a free boundary subject to surface tension
-
Schweizer, B. 2005. On the three-dimensional Euler equations with a free boundary subject to surface tension. Ann. Inst. H. Poincaré Anal. Non Linéaire, 22(6), 753-781.
-
(2005)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.22
, Issue.6
, pp. 753-781
-
-
Schweizer, B.1
-
50
-
-
78751704957
-
Local well-posedness for fluid interface problems
-
Shatah, J., and Zeng, C. 2011. Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal., 199(2), 653-705.
-
(2011)
Arch. Ration. Mech. Anal.
, vol.199
, Issue.2
, pp. 653-705
-
-
Shatah, J.1
Zeng, C.2
-
51
-
-
52349109943
-
On the free boundary problem of three-dimensional incompressible Euler equations
-
Zhang, P., and Zhang, Z. 2008. On the free boundary problem of three-dimensional incompressible Euler equations. Comm. Pure Appl. Math., 61(7), 877-940.
-
(2008)
Comm. Pure Appl. Math.
, vol.61
, Issue.7
, pp. 877-940
-
-
Zhang, P.1
Zhang, Z.2
-
52
-
-
34548424025
-
On the local wellposedness of 3-D water wave problem with vorticity
-
Zhang, P., and Zhang, Z.-F. 2007. On the local wellposedness of 3-D water wave problem with vorticity. Sci. China Ser. A, 50(8), 1065-1077.
-
(2007)
Sci. China Ser. A
, vol.50
, Issue.8
, pp. 1065-1077
-
-
Zhang, P.1
Zhang, Z.-F.2
-
55
-
-
67650725448
-
Global solutions for the gravity water waves equation in dimension 3
-
Germain, P., Masmoudi, N., and Shatah, J. 2009. Global solutions for the gravity water waves equation in dimension 3. C. R. Math. Acad. Sci. Paris, 347(15-16), 897-902.
-
(2009)
C. R. Math. Acad. Sci. Paris
, vol.347
, Issue.15-16
, pp. 897-902
-
-
Germain, P.1
Masmoudi, N.2
Shatah, J.3
-
56
-
-
84857870242
-
Global solutions for the gravity water waves equation in dimension 3
-
Germain, P., Masmoudi, N., and Shatah, J. 2012. Global solutions for the gravity water waves equation in dimension 3. Ann. of Math. (2), 175(2), 691-754.
-
(2012)
Ann. of Math. (2)
, vol.175
, Issue.2
, pp. 691-754
-
-
Germain, P.1
Masmoudi, N.2
Shatah, J.3
-
62
-
-
67650433790
-
Almost global wellposedness of the 2-D full water wave problem
-
Wu, S. 2009. Almost global wellposedness of the 2-D full water wave problem. Invent. Math., 177(1), 45-135.
-
(2009)
Invent. Math.
, vol.177
, Issue.1
, pp. 45-135
-
-
Wu, S.1
-
63
-
-
79952989811
-
Global wellposedness of the 3-D full water wave problem
-
Wu, S. 2011. Global wellposedness of the 3-D full water wave problem. Invent. Math., 184(1), 125-220.
-
(2011)
Invent. Math.
, vol.184
, Issue.1
, pp. 125-220
-
-
Wu, S.1
-
64
-
-
84870547349
-
Finite time singularities for water waves with surface tension
-
Castro, A., Cordoba, D., Fefferman, C., Gancedo, F., and Gomez-Serrano, J. 2012 a. Finite time singularities for water waves with surface tension. J. Math. Phys., 53(11)
-
(2012)
J. Math. Phys.
, vol.53
-
-
Castro, A.1
Cordoba, D.2
Fefferman, C.3
Gancedo, F.4
Gomez-Serrano, J.5
-
65
-
-
84856371495
-
Splash singularity for water waves
-
Castro, A., Córdoba, D., Fefferman, C.L., Gancedo, F., and Gómez-Serrano, J. 2012 b. Splash singularity for water waves. Proc. Natl. Acad. Sci. USA, 109(3), 733-738.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, Issue.3
, pp. 733-738
-
-
Castro, A.1
Córdoba, D.2
Fefferman, C.L.3
Gancedo, F.4
Gómez-Serrano, J.5
-
66
-
-
84891662791
-
On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations
-
Coutand, D., and Shkoller, S. 2014 a. On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations. Comm. Math. Phys., 325(1), 143-183.
-
(2014)
Comm. Math. Phys.
, vol.325
, Issue.1
, pp. 143-183
-
-
Coutand, D.1
Shkoller, S.2
-
69
-
-
84892595836
-
No-splash theorems for fluid interfaces
-
Fefferman, C.L. 2014. No-splash theorems for fluid interfaces. Proc. Natl. Acad. Sci. USA, 111(2), 573-574.
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, Issue.2
, pp. 573-574
-
-
Fefferman, C.L.1
-
70
-
-
85048397170
-
Cauchy problem and Kato smoothing for water waves with surface tension. Pages 1-14 of: Harmonic analysis and nonlinear partial differential equations. RIMS Kokŷuroku Bessatsu, B18
-
RIMS), Kyoto
-
Alazard, T., Burq, N., and Zuily, C. 2010. Cauchy problem and Kato smoothing for water waves with surface tension. Pages 1-14 of: Harmonic analysis and nonlinear partial differential equations. RIMS Kokŷuroku Bessatsu, B18. Res. Inst. Math. Sci. (RIMS), Kyoto.
-
(2010)
Res. Inst. Math. Sci.
-
-
Alazard, T.1
Burq, N.2
Zuily, C.3
-
71
-
-
79959880152
-
On the water-wave equations with surface tension
-
Alazard, T., Burq, N., and Zuily, C. 2011. On the water-wave equations with surface tension. Duke Math. J., 158(3), 413-499.
-
(2011)
Duke Math. J.
, vol.158
, Issue.3
, pp. 413-499
-
-
Alazard, T.1
Burq, N.2
Zuily, C.3
-
72
-
-
60449104603
-
Local smoothing effects for the water-wave problem with surface tension
-
Christianson, H., Hur, V.M., and Staffilani, G. 2009. Local smoothing effects for the water-wave problem with surface tension. C. R. Math. Acad. Sci. Paris, 347(3-4), 159-162.
-
(2009)
C. R. Math. Acad. Sci. Paris
, vol.347
, Issue.3-4
, pp. 159-162
-
-
Christianson, H.1
Hur, V.M.2
Staffilani, G.3
-
74
-
-
0004128127
-
-
Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York
-
Saffman, P.G. 1992. Vortex dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York.
-
(1992)
Vortex dynamics.
-
-
Saffman, P.G.1
-
75
-
-
0004259252
-
-
Cambridge Texts in Applied Mathematics, Cambridge: Cambridge University Press
-
Majda, A.J., and Bertozzi, A.L. 2002. Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, vol. 27. Cambridge: Cambridge University Press.
-
(2002)
Vorticity and incompressible flow.
, vol.27
-
-
Majda, A.J.1
Bertozzi, A.L.2
-
76
-
-
84963450929
-
Lagrangian theory for 3D vortex sheets with axial or helical symmetry
-
Caflisch, R.E., and Li, X.-F. 1992. Lagrangian theory for 3D vortex sheets with axial or helical symmetry. Transport Theory Statist. Phys., 21(4-6), 559-578.
-
(1992)
Transport Theory Statist. Phys.
, vol.21
, Issue.4-6
, pp. 559-578
-
-
Caflisch, R.E.1
Li, X.-F.2
-
77
-
-
0004026391
-
-
Dover Publications, Inc., New York. Boundary problems of function theory and their application to mathematical physics, Translated from the second (1946) Russian edition and with a preface by J. R. M. Radok, Corrected reprint of the 1953 English translation
-
Muskhelishvili, N.I. 1992. Singular integral equations. Dover Publications, Inc., New York. Boundary problems of function theory and their application to mathematical physics, Translated from the second (1946) Russian edition and with a preface by J. R. M. Radok, Corrected reprint of the 1953 English translation.
-
(1992)
Singular integral equations.
-
-
Muskhelishvili, N.I.1
-
79
-
-
0004186403
-
-
Reading, MA: Addison-Wesley Publishing Company Advanced Book Program
-
Helson, H. 1983. Harmonic analysis. Reading, MA: Addison-Wesley Publishing Company Advanced Book Program.
-
(1983)
Harmonic analysis.
-
-
Helson, H.1
-
80
-
-
84990576574
-
Growth rates for the linearized motion of fluid interfaces away from equilibrium
-
Beale, J.T., Hou, T.Y., and Lowengrub, J.S. 1993. Growth rates for the linearized motion of fluid interfaces away from equilibrium. Comm. Pure Appl. Math., 46(9), 1269-1301.
-
(1993)
Comm. Pure Appl. Math.
, vol.46
, Issue.9
, pp. 1269-1301
-
-
Beale, J.T.1
Hou, T.Y.2
Lowengrub, J.S.3
-
81
-
-
0001737039
-
Implicit-explicit methods for time-dependent partial differential equations
-
Ascher, U.M., Ruuth, S.J., and Wetton, B.T.R. 1995. Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal., 32(3), 797-823.
-
(1995)
SIAM J. Numer. Anal.
, vol.32
, Issue.3
, pp. 797-823
-
-
Ascher, U.M.1
Ruuth, S.J.2
Wetton, B.T.R.3
-
82
-
-
70349186572
-
Singularity formation in a model for the vortex sheet with surface tension
-
Ambrose, D.M. 2009. Singularity formation in a model for the vortex sheet with surface tension. Math. Comput. Simulation, 80(1), 102-111.
-
(2009)
Math. Comput. Simulation
, vol.80
, Issue.1
, pp. 102-111
-
-
Ambrose, D.M.1
-
83
-
-
84894118965
-
Computing time-periodic solutions of a model for the vortex sheet with surface tension
-
To appear
-
Ambrose, D.M., Kondrla, M., and Valle, M. 2013 a. Computing time-periodic solutions of a model for the vortex sheet with surface tension. Quart. Appl. Math. To appear.
-
(2013)
Quart. Appl. Math.
-
-
Ambrose, D.M.1
Kondrla, M.2
Valle, M.3
-
84
-
-
84896374602
-
The zero surface tension limit of two-dimensional interfacial Darcy flow
-
Ambrose, D.M. 2014. The zero surface tension limit of two-dimensional interfacial Darcy flow. J. Math. Fluid Mech., 16(1), 105-143.
-
(2014)
J. Math. Fluid Mech.
, vol.16
, Issue.1
, pp. 105-143
-
-
Ambrose, D.M.1
-
86
-
-
0020191249
-
Generalized vortex methods for free-surface flow problems
-
Baker, G.R., Meiron, D.I., and Orszag, S.A. 1982. Generalized vortex methods for free-surface flow problems. J. Fluid Mech., 123, 477-501.
-
(1982)
J. Fluid Mech.
, vol.123
, pp. 477-501
-
-
Baker, G.R.1
Meiron, D.I.2
Orszag, S.A.3
-
87
-
-
0011555392
-
The equations of motion of a perfect fluid with free boundary are not well posed
-
Ebin, D.G. 1987. The equations of motion of a perfect fluid with free boundary are not well posed. Comm. Partial Differential Equations, 12(10), 1175-1201.
-
(1987)
Comm. Partial Differential Equations
, vol.12
, Issue.10
, pp. 1175-1201
-
-
Ebin, D.G.1
-
88
-
-
4244168693
-
Singular perturbation of smoothly evolving Hele-Shaw solutions
-
Jan
-
Siegel, M., and Tanveer, S. 1996. Singular perturbation of smoothly evolving Hele-Shaw solutions. Phys. Rev. Lett., 76(Jan), 419-422.
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 419-422
-
-
Siegel, M.1
Tanveer, S.2
-
89
-
-
0030239360
-
Singular effects of surface tension in evolving Hele-Shaw flows
-
Siegel, M., Tanveer, S., and Dai, W.-S. 1996. Singular effects of surface tension in evolving Hele-Shaw flows. J. Fluid Mech., 323, 201-236.
-
(1996)
J. Fluid Mech.
, vol.323
, pp. 201-236
-
-
Siegel, M.1
Tanveer, S.2
Dai, W.-S.3
-
90
-
-
0033940025
-
The singular perturbation of surface tension in Hele-Shaw flows
-
Ceniceros, H.D., and Hou, T.Y. 2000. The singular perturbation of surface tension in Hele-Shaw flows. J. Fluid Mech., 409, 251-272.
-
(2000)
J. Fluid Mech.
, vol.409
, pp. 251-272
-
-
Ceniceros, H.D.1
Hou, T.Y.2
-
91
-
-
84896361854
-
Numerical study of interfacial problems with small surface tension
-
AMS/IP Stud. Adv. Math., Amer. Math. Soc., Providence, RI
-
Ceniceros, H.D., and Hou, T.Y. 2001. Numerical study of interfacial problems with small surface tension. Pages 63-92 of: First International Congress of Chinese Mathematicians (Beijing, 1998). AMS/IP Stud. Adv. Math., vol. 20. Amer. Math. Soc., Providence, RI
-
(2001)
Pages 63-92 of: First International Congress of Chinese Mathematicians (Beijing, 1998).
, vol.20
-
-
Ceniceros, H.D.1
Hou, T.Y.2
|