-
1
-
-
26944460000
-
The zero surface tension limit of two-dimensional water waves
-
Ambrose D., and Masmoudi N. The zero surface tension limit of two-dimensional water waves. Comm. Pure Appl. Math. 58 (2005) 1287-1315
-
(2005)
Comm. Pure Appl. Math.
, vol.58
, pp. 1287-1315
-
-
Ambrose, D.1
Masmoudi, N.2
-
2
-
-
0020191249
-
Generalized vortex methods for free-surface flow problems
-
Baker G., Meiron D., and Orszag S. Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123 (1982) 477-501
-
(1982)
J. Fluid Mech.
, vol.123
, pp. 477-501
-
-
Baker, G.1
Meiron, D.2
Orszag, S.3
-
3
-
-
84990576574
-
Growth rates for the linearized motion of fluid interfaces away from equilibrium
-
Beale T., Hou T., and Lowengrub J. Growth rates for the linearized motion of fluid interfaces away from equilibrium. Comm. Pure Appl. Math. 46 (1993) 1269-1301
-
(1993)
Comm. Pure Appl. Math.
, vol.46
, pp. 1269-1301
-
-
Beale, T.1
Hou, T.2
Lowengrub, J.3
-
5
-
-
0034368951
-
On the motion of the free surface of a liquid
-
Christodoulou D., and Lindblad H. On the motion of the free surface of a liquid. Comm. Pure Appl. Math. 53 12 (2000) 1536-1602
-
(2000)
Comm. Pure Appl. Math.
, vol.53
, Issue.12
, pp. 1536-1602
-
-
Christodoulou, D.1
Lindblad, H.2
-
7
-
-
67650500731
-
The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces
-
Córdoba A., Córdoba D., and Gancedo F. The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces. Proc. Natl. Sci. USA 106 27 (2009) 10955-10959
-
(2009)
Proc. Natl. Sci. USA
, vol.106
, Issue.27
, pp. 10955-10959
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
8
-
-
34249881893
-
Contour dynamics of incompressible 3-D fluids in a porous medium with different densities
-
Córdoba D., and Gancedo F. Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Comm. Math. Phys. 273 2 (2007) 445-471
-
(2007)
Comm. Math. Phys.
, vol.273
, Issue.2
, pp. 445-471
-
-
Córdoba, D.1
Gancedo, F.2
-
9
-
-
34548446988
-
Well-posedness of the free-surface incompressible Euler equations with or without surface tension
-
Coutand D., and Shkoller S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc. 20 3 (2007) 829-930
-
(2007)
J. Amer. Math. Soc.
, vol.20
, Issue.3
, pp. 829-930
-
-
Coutand, D.1
Shkoller, S.2
-
10
-
-
0001688084
-
An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits
-
Craig W. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations 10 8 (1985) 787-1003
-
(1985)
Comm. Partial Differential Equations
, vol.10
, Issue.8
, pp. 787-1003
-
-
Craig, W.1
-
12
-
-
0344453090
-
Ill-posedness of the Rayleigh-Taylor and Helmholtz problems for incompressible fluids
-
Ebin D.G. Ill-posedness of the Rayleigh-Taylor and Helmholtz problems for incompressible fluids. Comm. Partial Differential Equations 13 10 (1998) 1265-1295
-
(1998)
Comm. Partial Differential Equations
, vol.13
, Issue.10
, pp. 1265-1295
-
-
Ebin, D.G.1
-
13
-
-
39749086442
-
Existence for the α-patch model and the QG sharp front in Sobolev spaces
-
Gancedo F. Existence for the α-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217 6 (2008) 2569-2598
-
(2008)
Adv. Math.
, vol.217
, Issue.6
, pp. 2569-2598
-
-
Gancedo, F.1
-
14
-
-
0008283862
-
Removing the stiffness from interfacial flows with surface tension
-
Hou T., Lowengrub J.S., and Shelley M.J. Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114 (1994) 312-338
-
(1994)
J. Comput. Phys.
, vol.114
, pp. 312-338
-
-
Hou, T.1
Lowengrub, J.S.2
Shelley, M.J.3
-
15
-
-
22544482964
-
Well-posedness of the water-waves equations
-
Lannes D. Well-posedness of the water-waves equations. J. Amer. Math. Soc. 18 (2005) 605-654
-
(2005)
J. Amer. Math. Soc.
, vol.18
, pp. 605-654
-
-
Lannes, D.1
-
16
-
-
26044448758
-
Well-posedness for the motion of an incompressible liquid with free surface boundary
-
Lindblad H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. (2) 162 1 (2005) 109-194
-
(2005)
Ann. of Math. (2)
, vol.162
, Issue.1
, pp. 109-194
-
-
Lindblad, H.1
-
17
-
-
0000306561
-
The Cauchy-Poisson problem
-
(in Russian)
-
Nalinov V.I. The Cauchy-Poisson problem. Dynamika Splosh. Sredy 18 (1974) 1040-1210 (in Russian)
-
(1974)
Dynamika Splosh. Sredy
, vol.18
, pp. 1040-1210
-
-
Nalinov, V.I.1
-
18
-
-
52349104032
-
Geometry and a priori estimates for free boundary problems of the Euler equation
-
Shatah J., and Zeng C. Geometry and a priori estimates for free boundary problems of the Euler equation. Comm. Pure Appl. Math. 61 5 (2008) 698-744
-
(2008)
Comm. Pure Appl. Math.
, vol.61
, Issue.5
, pp. 698-744
-
-
Shatah, J.1
Zeng, C.2
-
19
-
-
0004136765
-
-
Princeton University Press, Princeton, NJ
-
Stein E. Harmonic Analysis (1993), Princeton University Press, Princeton, NJ
-
(1993)
Harmonic Analysis
-
-
Stein, E.1
-
20
-
-
0031506263
-
Well-posedness in Sobolev spaces of the full water wave problem in 2-D
-
Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130 (1997) 39-72
-
(1997)
Invent. Math.
, vol.130
, pp. 39-72
-
-
Wu, S.1
-
21
-
-
0033446356
-
Well-posedness in Sobolev spaces of the full water wave problem in 3-D
-
Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc. 12 (1999) 445-495
-
(1999)
J. Amer. Math. Soc.
, vol.12
, pp. 445-495
-
-
Wu, S.1
-
22
-
-
85009585833
-
Gravity waves on the free surface of an incompressible perfect fluid
-
Yosihara H. Gravity waves on the free surface of an incompressible perfect fluid. Publ. Res. Inst. Math. Sci. 18 (1982) 49-96
-
(1982)
Publ. Res. Inst. Math. Sci.
, vol.18
, pp. 49-96
-
-
Yosihara, H.1
-
23
-
-
52349109943
-
On the free boundary problem of three-dimensional incompressible Euler equations
-
Zhang P., and Zhang Z. On the free boundary problem of three-dimensional incompressible Euler equations. Comm. Pure Appl. Math. 61 (2008) 877-940
-
(2008)
Comm. Pure Appl. Math.
, vol.61
, pp. 877-940
-
-
Zhang, P.1
Zhang, Z.2
|