-
1
-
-
38349102793
-
Large time existence for 3D water-waves and asymptotics
-
no. 3
-
Alvarez-Samaniego, B.; Lannes, D. Large time existence for 3D water-waves and asymptotics. Invent. Math. 171 (2008), no. 3, 485-541.
-
(2008)
Invent. Math.
, vol.171
, pp. 485-541
-
-
Alvarez-Samaniego, B.1
Lannes, D.2
-
2
-
-
84355163743
-
-
Well-posedness of vortex sheets with surface tension. Doctoral dissertation, Duke University
-
Ambrose, D. M. Well-posedness of vortex sheets with surface tension. Doctoral dissertation, Duke University, 2002.
-
(2002)
-
-
Ambrose, D.M.1
-
3
-
-
1342266714
-
Well-posedness of vortex sheets with surface tension
-
no. 1
-
Ambrose, D. M. Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal. 35 (2003), no. 1, 211-244.
-
(2003)
SIAM J. Math. Anal.
, vol.35
, pp. 211-244
-
-
Ambrose, D.M.1
-
4
-
-
26944460000
-
The zero surface tension limit of two-dimensional water waves
-
no. 10
-
Ambrose, D. M.; Masmoudi, N. The zero surface tension limit of two-dimensional water waves. Comm. Pure Appl. Math. 58 (2005), no. 10, 1287-1315.
-
(2005)
Comm. Pure Appl. Math.
, vol.58
, pp. 1287-1315
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
5
-
-
67249144683
-
The zero surface tension limit of three-dimensional water waves
-
no. 2
-
Ambrose, D. M.; Masmoudi, N. The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J. 58 (2009), no. 2, 479-521.
-
(2009)
Indiana Univ. Math. J.
, vol.58
, pp. 479-521
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
6
-
-
0002244618
-
A theory of solitary water-waves in the presence of surface tension
-
no. 1
-
Amick, C. J.; Kirchgässner, K. A theory of solitary water-waves in the presence of surface tension. Arch. Rat. Mech. Anal. 105 (1989), no. 1, 1-49.
-
(1989)
Arch. Rat. Mech. Anal.
, vol.105
, pp. 1-49
-
-
Amick, C.J.1
Kirchgässner, K.2
-
7
-
-
0020191249
-
Generalized vortex methods for free-surface flow problems
-
Baker, G.; Meiron, D.; Orszag, S. Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123 (1982), 477-501.
-
(1982)
J. Fluid Mech.
, vol.123
, pp. 477-501
-
-
Baker, G.1
Meiron, D.2
Orszag, S.3
-
8
-
-
84990576574
-
Growth rates for the linearized motion of fluid interfaces away from equilibrium
-
no. 9
-
Beale, J. T.; Hou, T. Y.; Lowengrub, J. Growth rates for the linearized motion of fluid interfaces away from equilibrium. Comm. Pure Appl. Math. 46 (1993), no. 9, 1269-1301.
-
(1993)
Comm. Pure Appl. Math.
, vol.46
, pp. 1269-1301
-
-
Beale, J.T.1
Hou, T.Y.2
Lowengrub, J.3
-
9
-
-
27944474754
-
Long waves approximations for water waves
-
no. 3
-
Bona, J. B.; Colin, T.; Lannes, D. Long waves approximations for water waves. Arch. Rat. Mech. Anal. 178 (2005), no. 3, 373-410.
-
(2005)
Arch. Rat. Mech. Anal.
, vol.178
, pp. 373-410
-
-
Bona, J.B.1
Colin, T.2
Lannes, D.3
-
10
-
-
0001681902
-
Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire
-
Available online at:
-
Boussinesq, J. V. Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris Sér. A-B 72 (1871), 755-759. Available online at:
-
(1871)
C. R. Acad. Sci. Paris Sér. A-B
, vol.72
, pp. 755-759
-
-
Boussinesq, J.V.1
-
12
-
-
58949090469
-
On the Korteweg-de Vries approximation for uneven bottoms
-
no. 2
-
Chazel, F. On the Korteweg-de Vries approximation for uneven bottoms. Eur. J. Mech. B Fluids 28 (2009), no. 2, 234-252.
-
(2009)
Eur. J. Mech. B Fluids
, vol.28
, pp. 234-252
-
-
Chazel, F.1
-
13
-
-
84355163742
-
-
Local smoothing effects for the water-wave problem with surface tension. Preprint, 2008. arXiv:0809.4515v2
-
Christianson, H.; Hur, V. M.; Staffilani, G. Local smoothing effects for the water-wave problem with surface tension. Preprint, 2008. arXiv:0809.4515v2
-
-
-
Christianson, H.1
Hur, V.M.2
Staffilani, G.3
-
15
-
-
51149123085
-
On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves
-
Constantin, A.; Johnson, R. S. On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves. J. Nonlinear Math. Phys. 15 (2008), suppl. 2, 58-73.
-
(2008)
J. Nonlinear Math. Phys.
, vol.15
, Issue.SUPPL. 2
, pp. 58-73
-
-
Constantin, A.1
Johnson, R.S.2
-
16
-
-
38649087078
-
Propagation of very long water waves, with vorticity, over variable depth, with application to tsunamis
-
no. 3
-
Constantin, A.; Johnson, R. S. Propagation of very long water waves, with vorticity, over variable depth, with application to tsunamis. Fluid Dynam. Res. 40 (2008), no. 3, 175-211.
-
(2008)
Fluid Dynam. Res.
, vol.40
, pp. 175-211
-
-
Constantin, A.1
Johnson, R.S.2
-
17
-
-
70350325132
-
Interface evolution: water waves in 2-D
-
no. 1
-
Córdoba, A.; Córdoba, D.; Gancedo, F. Interface evolution: water waves in 2-D. Adv. Math. 223 (2010), no. 1, 120-173.
-
(2010)
Adv. Math.
, vol.223
, pp. 120-173
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
18
-
-
0001688084
-
An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits
-
no. 8
-
Craig, W. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations 10 (1985), no. 8, 787-1003.
-
(1985)
Comm. Partial Differential Equations
, vol.10
, pp. 787-1003
-
-
Craig, W.1
-
19
-
-
33749324152
-
Surface water waves and tsunamis
-
no. 3
-
Craig, W. Surface water waves and tsunamis. J. Dynam. Differential Equations 18 (2006), no. 3, 525-549.
-
(2006)
J. Dynam. Differential Equations
, vol.18
, pp. 525-549
-
-
Craig, W.1
-
21
-
-
67650725448
-
Global solutions for the gravity water waves equation in dimension 3
-
no. 15-16
-
Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for the gravity water waves equation in dimension 3. C. R. Math. Acad. Sci. Paris 347 (2009), no. 15-16, 897-902.
-
(2009)
C. R. Math. Acad. Sci. Paris
, vol.347
, pp. 897-902
-
-
Germain, P.1
Masmoudi, N.2
Shatah, J.3
-
22
-
-
84870595438
-
Global solutions for the gravity water waves equation in dimension 3
-
forthcoming.
-
Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for the gravity water waves equation in dimension 3. Ann. of Math., forthcoming.
-
Ann. of Math.
-
-
Germain, P.1
Masmoudi, N.2
Shatah, J.3
-
23
-
-
0008283862
-
Removing the stiffness from interfacial flows with surface tension
-
no. 2
-
Hou, T. J.; Lowengrub, J.; Shelley, M. Removing the stiffness from interfacial flows with surface tension. J. Comp. Phys. 114 (1994), no. 2, 312-338.
-
(1994)
J. Comp. Phys.
, vol.114
, pp. 312-338
-
-
Hou, T.J.1
Lowengrub, J.2
Shelley, M.3
-
24
-
-
0030870172
-
The long-time motion of vortex sheets with surface tension
-
no. 7
-
Hou, T. J.; Lowengrub, J.; Shelley, M. The long-time motion of vortex sheets with surface tension. Phys. Fluids 9 (1997), no. 7, 1933-1954.
-
(1997)
Phys. Fluids
, vol.9
, pp. 1933-1954
-
-
Hou, T.J.1
Lowengrub, J.2
Shelley, M.3
-
25
-
-
1342277839
-
Well-posedness of the initial value problem for capillary-gravity waves
-
no. 2
-
Iguchi, T. Well-posedness of the initial value problem for capillary-gravity waves. Funkcial. Ekvac. 44 (2001), no. 2, 219-241.
-
(2001)
Funkcial. Ekvac.
, vol.44
, pp. 219-241
-
-
Iguchi, T.1
-
26
-
-
34548238144
-
A mathematical justification of the forced Korteweg-de Vries equation for capillary-gravity waves
-
no. 2
-
Iguchi, T. A mathematical justification of the forced Korteweg-de Vries equation for capillary-gravity waves. Kyushu J. Math. 60 (2006), no. 2, 267-303.
-
(2006)
Kyushu J. Math.
, vol.60
, pp. 267-303
-
-
Iguchi, T.1
-
27
-
-
33847163682
-
A long wave approximation for capillary-gravity waves and an effect of the bottom
-
no. 1-3
-
Iguchi, T. A long wave approximation for capillary-gravity waves and an effect of the bottom. Comm. Partial Differential Equations 32 (2007), no. 1-3, 37-85.
-
(2007)
Comm. Partial Differential Equations
, vol.32
, pp. 37-85
-
-
Iguchi, T.1
-
28
-
-
77950220771
-
A long wave approximation for capillary-gravity waves and the Kawahara equation
-
no. 2
-
Iguchi, T. A long wave approximation for capillary-gravity waves and the Kawahara equation. Bull. Inst. Math. Acad. Sin. (N.S.) 2 (2007), no. 2, 179-220.
-
(2007)
Bull. Inst. Math. Acad. Sin. (N.S.)
, vol.2
, pp. 179-220
-
-
Iguchi, T.1
-
29
-
-
0025481086
-
Theory of nonlinear waves described by fifth-order evolution equations
-
translated from Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 1990, no. 2, 99-104.
-
Il'ichev, A. T. Theory of nonlinear waves described by fifth-order evolution equations. Fluid Dynam. 25 (1990), 247-252; translated from Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 1990, no. 2, 99-104.
-
(1990)
Fluid Dynam.
, vol.25
, pp. 247-252
-
-
Il'ichev, A.T.1
-
30
-
-
0006775019
-
Capillary-gravity water-waves problem as a dynamical system
-
Advanced Series in Nonlinear Dynamics, 7. World Scientific, River Edge, N.J.
-
Iooss, G. Capillary-gravity water-waves problem as a dynamical system. Proceedings of the IUTAM/ISIMM Symposium on Structure and Dynamics of Nonlinear Waves in Fluids (Hannover, 1994), 42-57. Advanced Series in Nonlinear Dynamics, 7. World Scientific, River Edge, N.J., 1995.
-
(1995)
Proceedings of the IUTAM/ISIMM Symposium on Structure and Dynamics of Nonlinear Waves in Fluids (Hannover, 1994)
, pp. 42-57
-
-
Iooss, G.1
-
31
-
-
0040325565
-
Sur les ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau profonde
-
no. 2
-
Kano, T.; Nishida, T. Sur les ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau profonde. J. Math. Kyoto Univ. 19 (1979), no. 2, 335-370.
-
(1979)
J. Math. Kyoto Univ.
, vol.19
, pp. 335-370
-
-
Kano, T.1
Nishida, T.2
-
32
-
-
84972562218
-
A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves
-
Kano, T.; Nishida, T. A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves. Osaka J. Math 23 (1986), 389-413.
-
(1986)
Osaka J. Math
, vol.23
, pp. 389-413
-
-
Kano, T.1
Nishida, T.2
-
33
-
-
0001524186
-
On the change form of long waves advancing in the rectangular canal and a new type of long stationary waves
-
Korteweg, D. J.; de Vries, G. On the change form of long waves advancing in the rectangular canal and a new type of long stationary waves. Philos. Mag. 39 (1895), 422-434.
-
(1895)
Philos. Mag.
, vol.39
, pp. 422-434
-
-
Korteweg, D.J.1
de Vries, G.2
-
34
-
-
22544482964
-
Well-posedness of the water-waves equations
-
no. 3
-
Lannes, D. Well-posedness of the water-waves equations. J. Amer. Math. Soc. 18 (2005), no. 3, 605-654.
-
(2005)
J. Amer. Math. Soc.
, vol.18
, pp. 605-654
-
-
Lannes, D.1
-
35
-
-
0000306561
-
The Cauchy-Poisson problem
-
Nalimov, V. A. The Cauchy-Poisson problem. Dinamika Splov̌sn. Sredy 18 (1974), 104-210.
-
(1974)
Dinamika Splov̌sn. Sredy
, vol.18
, pp. 104-210
-
-
Nalimov, V.A.1
-
36
-
-
62649143819
-
A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation
-
no. 4
-
Ohi, K.; Iguchi, T. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete Contin. Dyn. Syst. 23 (2009), no. 4, 1205-1240.
-
(2009)
Discrete Contin. Dyn. Syst.
, vol.23
, pp. 1205-1240
-
-
Ohi, K.1
Iguchi, T.2
-
38
-
-
0001964260
-
Report on waves
-
Murray, London, Available at:
-
Russell, J. S. Report on waves. Report of the Fourteenth Meeting of the British Association for the Advancement of Science (York, September 1844), 311-390. Murray, London, 1845. Available at:
-
(1845)
Report of the Fourteenth Meeting of the British Association for the Advancement of Science (York, September 1844)
, pp. 311-390
-
-
Russell, J.S.1
-
39
-
-
85040958017
-
-
Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York
-
Saffman, P. G. Vortex dynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, New York, 1992.
-
(1992)
Vortex dynamics
-
-
Saffman, P.G.1
-
40
-
-
0034364719
-
The long-wave limit for the water wave problem. I. The case of zero surface tension
-
no. 12
-
Schneider, G.; Wayne, C. E. The long-wave limit for the water wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math. 53 (2000), no. 12, 1475-1535.
-
(2000)
Comm. Pure Appl. Math.
, vol.53
, pp. 1475-1535
-
-
Schneider, G.1
Wayne, C.E.2
-
41
-
-
0036012969
-
The rigorous approximation of long-wavelength capillary-gravity waves
-
no. 3
-
Schneider, G.; Wayne, C. E. The rigorous approximation of long-wavelength capillary-gravity waves. Arch. Ration. Mech. Anal. 162 (2002), no. 3, 247-285.
-
(2002)
Arch. Ration. Mech. Anal.
, vol.162
, pp. 247-285
-
-
Schneider, G.1
Wayne, C.E.2
-
42
-
-
31744451150
-
On the validity of 2D-surface water wave models
-
no. 1-2
-
Schneider, G.; Wayne, C. E. On the validity of 2D-surface water wave models. GAMM Mitt. Ges. Angew. Math. Mech. 25 (2002), no. 1-2, 127-151.
-
(2002)
GAMM Mitt. Ges. Angew. Math. Mech.
, vol.25
, pp. 127-151
-
-
Schneider, G.1
Wayne, C.E.2
-
43
-
-
84857431561
-
Correction to: The long-wave limit for the water wave problem. I. The case of zero surface tension
-
forthcoming.
-
Schneider, G.; Wayne, C. E. Correction to: The long-wave limit for the water wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math., forthcoming.
-
Comm. Pure Appl. Math.
-
-
Schneider, G.1
Wayne, C.E.2
-
44
-
-
33744803750
-
Corrections to the KdV approximation for water waves
-
no. 4
-
Wright, J. D. Corrections to the KdV approximation for water waves. SIAM J. Math. Anal. 37 (2005), no. 4, 1161-1206.
-
(2005)
SIAM J. Math. Anal.
, vol.37
, pp. 1161-1206
-
-
Wright, J.D.1
-
45
-
-
0031506263
-
Well-posedness in Sobolev-spaces of the full water wave problem in 2-D
-
no. 1
-
Wu, S. Well-posedness in Sobolev-spaces of the full water wave problem in 2-D. Invent. Math. 130 (1997), no. 1, 39-72.
-
(1997)
Invent. Math.
, vol.130
, pp. 39-72
-
-
Wu, S.1
-
46
-
-
67650433790
-
Almost global wellposedness of the 2-D full water wave problem
-
no. 1
-
Wu, S. Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177 (2009), no. 1, 45-135.
-
(2009)
Invent. Math.
, vol.177
, pp. 45-135
-
-
Wu, S.1
-
47
-
-
79952989811
-
Global well-posedness of the 3-D full water wave problem
-
no. 1
-
Wu, S. Global well-posedness of the 3-D full water wave problem. Invent. Math. 184 (2011), no. 1, 125-220.
-
(2011)
Invent. Math.
, vol.184
, pp. 125-220
-
-
Wu, S.1
-
48
-
-
0000891913
-
On a solution on nonlinear time-evolution of fifth order
-
no. 5
-
Yamamoto, Y.; Takizawa, E. I. On a solution on nonlinear time-evolution of fifth order. J. Phys. Soc. Japan 50 (1981), no. 5, 1421-1422.
-
(1981)
J. Phys. Soc. Japan
, vol.50
, pp. 1421-1422
-
-
Yamamoto, Y.1
Takizawa, E.I.2
-
49
-
-
85009585833
-
Gravity waves on the free surface of an incompressible perfect fluid of finite depth
-
no. 1
-
Yosihara, H. Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 49-96.
-
(1982)
Publ. Res. Inst. Math. Sci.
, vol.18
, pp. 49-96
-
-
Yosihara, H.1
-
50
-
-
0000375767
-
Capillary-gravity waves for an incompressible ideal fluid
-
no. 4
-
Yosihara, H. Capillary-gravity waves for an incompressible ideal fluid. J. Math Kyoto Univ. 23 (1983), no. 4, 649-694.
-
(1983)
J. Math Kyoto Univ.
, vol.23
, pp. 649-694
-
-
Yosihara, H.1
-
51
-
-
33846361348
-
Interactions of "solitons" in collisionless plasma and the recurrence of initial states
-
no. 6, Available at:
-
Zabusky, N. J.; Kruskal, M. D. Interactions of "solitons" in collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15 (1965), no. 6, 240-243. Available at:
-
(1965)
Phys. Rev. Lett.
, vol.15
, pp. 240-243
-
-
Zabusky, N.J.1
Kruskal, M.D.2
|