-
1
-
-
26944460000
-
The zero surface tension limit of two-dimensional water waves
-
Ambrose D.M., and Masmoudi N. The zero surface tension limit of two-dimensional water waves. Comm. Pure Appl. Math. 58 (2005) 1287-1315
-
(2005)
Comm. Pure Appl. Math.
, vol.58
, pp. 1287-1315
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
2
-
-
60449114484
-
The zero surface tension limit of three-dimensional water waves
-
in press
-
D.M. Ambrose, N. Masmoudi, The zero surface tension limit of three-dimensional water waves, Indiana U. Math. J. (2008), in press
-
(2008)
Indiana U. Math. J
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
3
-
-
22844455356
-
Gain of regularity for semilinear Schrödinger equations
-
Chihara H. Gain of regularity for semilinear Schrödinger equations. Math. Ann. 315 (1999) 529-567
-
(1999)
Math. Ann.
, vol.315
, pp. 529-567
-
-
Chihara, H.1
-
4
-
-
0034368951
-
On the motion of the free surface of a liquid
-
Christodoulou D., and Lindblad H. On the motion of the free surface of a liquid. Comm. Pure Appl. Math. 53 (2000) 1536-1602
-
(2000)
Comm. Pure Appl. Math.
, vol.53
, pp. 1536-1602
-
-
Christodoulou, D.1
Lindblad, H.2
-
5
-
-
84968508844
-
Local smoothing properties of dispersive equations
-
Constantin P., and Saut J.-C. Local smoothing properties of dispersive equations. J. Amer. Math. Soc. 1 (1988) 413-439
-
(1988)
J. Amer. Math. Soc.
, vol.1
, pp. 413-439
-
-
Constantin, P.1
Saut, J.-C.2
-
6
-
-
34548446988
-
Well posedness of the free-surface incompressible Euler equations with or without surface tension
-
Coutand D., and Shkoller S. Well posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc. 20 (2007) 823-930
-
(2007)
J. Amer. Math. Soc.
, vol.20
, pp. 823-930
-
-
Coutand, D.1
Shkoller, S.2
-
7
-
-
0001688084
-
An existence theory for water waves and the Boussinesq ad Korteweg-de Vries scaling limits
-
Craig W. An existence theory for water waves and the Boussinesq ad Korteweg-de Vries scaling limits. Comm. Partial Differential Equations 10 (1985) 787-1003
-
(1985)
Comm. Partial Differential Equations
, vol.10
, pp. 787-1003
-
-
Craig, W.1
-
8
-
-
84990700842
-
Microlocal dispersive smoothing for the Schrödinger equation
-
Craig W., Kappeler T., and Strauss W. Microlocal dispersive smoothing for the Schrödinger equation. Comm. Pure Appl. Math. 48 (1995) 769-860
-
(1995)
Comm. Pure Appl. Math.
, vol.48
, pp. 769-860
-
-
Craig, W.1
Kappeler, T.2
Strauss, W.3
-
9
-
-
0003155025
-
Smoothing effects of Schrödinger evolution groups on Riemannian manifolds
-
Doi S. Smoothing effects of Schrödinger evolution groups on Riemannian manifolds. Duke Math. J. 82 (1996) 679-706
-
(1996)
Duke Math. J.
, vol.82
, pp. 679-706
-
-
Doi, S.1
-
10
-
-
0040325565
-
Sur des ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau peu profonde
-
Kano T., and Nishida T. Sur des ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau peu profonde. J. Math. Kyoto Univ. 19 (1979) 335-370
-
(1979)
J. Math. Kyoto Univ.
, vol.19
, pp. 335-370
-
-
Kano, T.1
Nishida, T.2
-
11
-
-
0002362136
-
On the Cauchy problem for the (generalized) Korteweg-de Vries equation
-
Academic Press
-
Kato T. On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in Applied Mathematics vol. 8 (1983), Academic Press 93-128
-
(1983)
Studies in Applied Mathematics
, vol.8
, pp. 93-128
-
-
Kato, T.1
-
12
-
-
0001969794
-
Oscillatory integrals and regularity of dispersive equations
-
Kenig C.E., Ponce G., and Vega L. Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40 (1991) 33-69
-
(1991)
Indiana Univ. Math. J.
, vol.40
, pp. 33-69
-
-
Kenig, C.E.1
Ponce, G.2
Vega, L.3
-
13
-
-
0039165707
-
Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations
-
Kenig C.E., Ponce G., and Vega L. Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math. 134 (1998) 489-545
-
(1998)
Invent. Math.
, vol.134
, pp. 489-545
-
-
Kenig, C.E.1
Ponce, G.2
Vega, L.3
-
14
-
-
22544482964
-
Well-posedness of the water-wave equations
-
Lannes D. Well-posedness of the water-wave equations. J. Amer. Math. Soc. 18 (2005) 605-654
-
(2005)
J. Amer. Math. Soc.
, vol.18
, pp. 605-654
-
-
Lannes, D.1
-
15
-
-
26044448758
-
Well-posedness for the motion of an incompressible liquid with free surface boundary
-
Lindblad H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. 162 (2005) 109-194
-
(2005)
Ann. of Math.
, vol.162
, pp. 109-194
-
-
Lindblad, H.1
-
19
-
-
0001679726
-
Regularity of solutions to the Schrodinger equation
-
Sjölin P. Regularity of solutions to the Schrodinger equation. Duke Math. J. 55 (1987) 699-715
-
(1987)
Duke Math. J.
, vol.55
, pp. 699-715
-
-
Sjölin, P.1
-
20
-
-
0000801121
-
The Schrödinger equation: pointwise convergence to the initial data
-
Vega L. The Schrödinger equation: pointwise convergence to the initial data. Proc. Amer. Math. Soc. 102 (1998) 874-878
-
(1998)
Proc. Amer. Math. Soc.
, vol.102
, pp. 874-878
-
-
Vega, L.1
-
21
-
-
0031506263
-
Well-posedness in Sobolev spaces of the full water wave problem in 2-D
-
Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130 (1997) 39-72
-
(1997)
Invent. Math.
, vol.130
, pp. 39-72
-
-
Wu, S.1
-
22
-
-
0033446356
-
Well-posedness in Sobolev spaces of the full water wave problem in 3-D
-
Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc. 12 (1999) 445-495
-
(1999)
J. Amer. Math. Soc.
, vol.12
, pp. 445-495
-
-
Wu, S.1
-
23
-
-
85009585833
-
Gravity waves on the free surface of an incompressible perfect fluid of finite depth
-
Yosihara H. Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18 (1982) 49-96
-
(1982)
Publ. Res. Inst. Math. Sci.
, vol.18
, pp. 49-96
-
-
Yosihara, H.1
-
24
-
-
0000375767
-
Capillary-gravity waves for an incompressible ideal fluid
-
Yosihara H. Capillary-gravity waves for an incompressible ideal fluid. J. Math. Kyoto Univ. 23 (1983) 649-694
-
(1983)
J. Math. Kyoto Univ.
, vol.23
, pp. 649-694
-
-
Yosihara, H.1
|