-
1
-
-
79959880152
-
On the water-wave equations with surface tension
-
10.1215/00127094-1345653
-
Alazard T. Burq N. Zuily C. On the water-wave equations with surface tension. Duke Math. J. 2011, 158(3):413-499. 10.1215/00127094-1345653
-
(2011)
Duke Math. J.
, vol.158
, Issue.3
, pp. 413-499
-
-
Alazard, T.1
Burq, N.2
Zuily, C.3
-
2
-
-
74949116792
-
Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves
-
10.1080/03605300903296736
-
Alazard T. Métivier G. Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves. Commun. Partial Differ. Equ. 2009, 34(10-12):1632-1704. 10.1080/03605300903296736
-
(2009)
Commun. Partial Differ. Equ.
, vol.34
, Issue.10-12
, pp. 1632-1704
-
-
Alazard, T.1
Métivier, G.2
-
3
-
-
38349102793
-
Large time existence for 3D water-waves and asymptotics
-
10.1007/s00222-007-0088-4
-
Alvarez-Samaniego B. Lannes D. Large time existence for 3D water-waves and asymptotics. Invent. Math. 2008, 171(3):485-541. 10.1007/s00222-007-0088-4
-
(2008)
Invent. Math.
, vol.171
, Issue.3
, pp. 485-541
-
-
Alvarez-Samaniego, B.1
Lannes, D.2
-
4
-
-
1342266714
-
Well-posedness of vortex sheets with surface tension
-
10.1137/S0036141002403869
-
Ambrose D.M. Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal. 2003, 35(1):211-244. 10.1137/S0036141002403869.
-
(2003)
SIAM J. Math. Anal.
, vol.35
, Issue.1
, pp. 211-244
-
-
Ambrose, D.M.1
-
5
-
-
26944460000
-
The zero surface tension limit of two-dimensional water waves
-
10.1002/cpa.20085
-
Ambrose D.M. Masmoudi N. The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 2005, 58(10):1287-1315. 10.1002/cpa.20085
-
(2005)
Commun. Pure Appl. Math.
, vol.58
, Issue.10
, pp. 1287-1315
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
6
-
-
67249144683
-
The zero surface tension limit of three-dimensional water waves
-
10.1512/iumj.2009.58.3450
-
Ambrose D.M. Masmoudi N. The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J. 2009, 58(2):479-521. 10.1512/iumj.2009.58.3450
-
(2009)
Indiana Univ. Math. J.
, vol.58
, Issue.2
, pp. 479-521
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
7
-
-
84990576574
-
Growth rates for the linearized motion of fluid interfaces away from equilibrium
-
10.1002/cpa.3160460903
-
Beale J.T. Hou T.Y. Lowengrub J.S. Growth rates for the linearized motion of fluid interfaces away from equilibrium. Commun. Pure Appl. Math. 1993, 46(9):1269-1301. 10.1002/cpa.3160460903
-
(1993)
Commun. Pure Appl. Math.
, vol.46
, Issue.9
, pp. 1269-1301
-
-
Beale, J.T.1
Hou, T.Y.2
Lowengrub, J.S.3
-
8
-
-
84870575477
-
Finite time singularities for the free boundary incompressible Euler equations
-
e-print arXiv:1112.2170 .
-
Castro A. Córdoba D. Fefferman C. Gancedo F. Gómez-Serrano J. Finite time singularities for the free boundary incompressible Euler equations. 2011, and e-print arXiv:1112.2170.
-
(2011)
-
-
Castro, A.1
Córdoba, D.2
Fefferman, C.3
Gancedo, F.4
Gómez-Serrano, J.5
-
10
-
-
84857721683
-
Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves
-
10.4007/annals.2012.175.2.9
-
Castro A. Córdoba D. Fefferman C. Gancedo F. López-Fernández M. Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. 2012, 175(2):909-948. 10.4007/annals.2012.175.2.9
-
(2012)
Ann. Math.
, vol.175
, Issue.2
, pp. 909-948
-
-
Castro, A.1
Córdoba, D.2
Fefferman, C.3
Gancedo, F.4
López-Fernández, M.5
-
11
-
-
0034368951
-
On the motion of the free surface of a liquid
-
10.1002/1097-0312(200012)53:12<1536::AID-CPA23.0.CO;2-Q
-
Christodoulou D. Lindblad H. On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 2000, 53(12):1536-1602. 10.1002/1097-0312(200012)53:12<1536::AID-CPA23.0.CO;2-Q
-
(2000)
Commun. Pure Appl. Math.
, vol.53
, Issue.12
, pp. 1536-1602
-
-
Christodoulou, D.1
Lindblad, H.2
-
12
-
-
70350325132
-
Interface evolution: water waves in 2-D
-
10.1016/j.aim.2009.07.016
-
Córdoba A. Córdoba D. Gancedo F. Interface evolution: water waves in 2-D. Adv. Math. 2010, 223(1):120-173. 10.1016/j.aim.2009.07.016
-
(2010)
Adv. Math.
, vol.223
, Issue.1
, pp. 120-173
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
13
-
-
34548446988
-
Well-posedness of the free-surface incompressible Euler equations with or without surface tension
-
10.1090/S0894-0347-07-00556-5
-
Coutand D. Shkoller S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 2007, 20(3):829-930. 10.1090/S0894-0347-07-00556-5
-
(2007)
J. Am. Math. Soc.
, vol.20
, Issue.3
, pp. 829-930
-
-
Coutand, D.1
Shkoller, S.2
-
14
-
-
84870558141
-
On the finite-time splash and splat singularities for the 3-D free-surface Euler equations
-
e-print arXiv:1201.4919 (2012).
-
Coutand D. Shkoller S. On the finite-time splash and splat singularities for the 3-D free-surface Euler equations. and e-print arXiv:1201.4919 (2012).
-
-
-
Coutand, D.1
Shkoller, S.2
-
15
-
-
0001688084
-
An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits
-
10.1080/03605308508820396
-
Craig W. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Commun. Partial Differ. Equ. 1985, 10(8):787-1003. 10.1080/03605308508820396.
-
(1985)
Commun. Partial Differ. Equ.
, vol.10
, Issue.8
, pp. 787-1003
-
-
Craig, W.1
-
16
-
-
84857870242
-
Global solutions for the gravity water waves equation in dimension 3
-
10.4007/annals.2012.175.2.6
-
Germain P. Masmoudi N. Shatah J. Global solutions for the gravity water waves equation in dimension 3. Ann. Math. 2012, 175(2):691-754. 10.4007/annals.2012.175.2.6
-
(2012)
Ann. Math.
, vol.175
, Issue.2
, pp. 691-754
-
-
Germain, P.1
Masmoudi, N.2
Shatah, J.3
-
17
-
-
0008283862
-
Removing the stiffness from interfacial flows with surface tension
-
10.1006/jcph.1994.1170
-
Hou T.Y. Lowengrub J.S. Shelley M.J. Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 1994, 114(2):312-338. 10.1006/jcph.1994.1170
-
(1994)
J. Comput. Phys.
, vol.114
, Issue.2
, pp. 312-338
-
-
Hou, T.Y.1
Lowengrub, J.S.2
Shelley, M.J.3
-
18
-
-
22544482964
-
Well-posedness of the water-waves equations
-
10.1090/S0894-0347-05-00484-4
-
Lannes D. Well-posedness of the water-waves equations. J. Am. Math. Soc. 2005, 18(3):605-654. 10.1090/S0894-0347-05-00484-4.
-
(2005)
J. Am. Math. Soc.
, vol.18
, Issue.3
, pp. 605-654
-
-
Lannes, D.1
-
19
-
-
77958104068
-
A stability criterion for two-fluid interfaces and applications
-
e-print arXiv:1005.4565 .
-
Lannes D. A stability criterion for two-fluid interfaces and applications. 2010, e-print arXiv:1005.4565.
-
(2010)
-
-
Lannes, D.1
-
20
-
-
26044448758
-
Well-posedness for the motion of an incompressible liquid with free surface boundary
-
10.4007/annals.2005.162.109
-
Lindblad H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 2005, 162(1):109-194. 10.4007/annals.2005.162.109.
-
(2005)
Ann. Math.
, vol.162
, Issue.1
, pp. 109-194
-
-
Lindblad, H.1
-
21
-
-
0000306561
-
The Cauchy-Poisson problem
-
Dinamika Splon. Sredy (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami)
-
Nalimov V.I. The Cauchy-Poisson problem. 1974, 104-210. Dinamika Splon. Sredy (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami) pp.
-
(1974)
, pp. 104-210
-
-
Nalimov, V.I.1
-
22
-
-
52349104032
-
Geometry and a priori estimates for free boundary problems of the Euler equation
-
10.1002/cpa.20213
-
Shatah J. Zeng C. Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 2008, 61(5):698-744. 10.1002/cpa.20213
-
(2008)
Commun. Pure Appl. Math.
, vol.61
, Issue.5
, pp. 698-744
-
-
Shatah, J.1
Zeng, C.2
-
23
-
-
0031506263
-
Well-posedness in Sobolev spaces of the full water wave problem in 2-D
-
10.1007/s002220050177
-
Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 1997, 130(1):39-72. 10.1007/s002220050177.
-
(1997)
Invent. Math.
, vol.130
, Issue.1
, pp. 39-72
-
-
Wu, S.1
-
24
-
-
0033446356
-
Well-posedness in Sobolev spaces of the full water wave problem in 3-D
-
10.1090/S0894-0347-99-00290-8
-
Wu S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 1999, 12(2):445-495. 10.1090/S0894-0347-99-00290-8.
-
(1999)
J. Am. Math. Soc.
, vol.12
, Issue.2
, pp. 445-495
-
-
Wu, S.1
-
25
-
-
67650433790
-
Almost global wellposedness of the 2-D full water wave problem
-
10.1007/s00222-009-0176-8
-
Wu S. Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 2009, 177(1):45-135. 10.1007/s00222-009-0176-8.
-
(2009)
Invent. Math.
, vol.177
, Issue.1
, pp. 45-135
-
-
Wu, S.1
-
26
-
-
79952989811
-
Global wellposedness of the 3-D full water wave problem
-
10.1007/s00222-010-0288-1
-
Wu S. Global wellposedness of the 3-D full water wave problem. Invent. Math. 2011, 184(1):125-220. 10.1007/s00222-010-0288-1.
-
(2011)
Invent. Math.
, vol.184
, Issue.1
, pp. 125-220
-
-
Wu, S.1
-
27
-
-
85009585833
-
Gravity waves on the free surface of an incompressible perfect fluid of finite depth
-
10.2977/prims/1195184016
-
Yosihara H. Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 1982, 18(1):49-96. 10.2977/prims/1195184016.
-
(1982)
Publ. Res. Inst. Math. Sci.
, vol.18
, Issue.1
, pp. 49-96
-
-
Yosihara, H.1
-
28
-
-
52349109943
-
On the free boundary problem of three-dimensional incompressible Euler equations
-
10.1002/cpa.20226
-
Zhang P. Zhang Z. On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 2008, 61(7):877-940. 10.1002/cpa.20226
-
(2008)
Commun. Pure Appl. Math.
, vol.61
, Issue.7
, pp. 877-940
-
-
Zhang, P.1
Zhang, Z.2
|