-
1
-
-
1342266714
-
Well-posedness of vortex sheets with surface tension
-
doi:10.1137/S0036141002403869
-
Ambrose, D. M. 2003 Well-posedness of vortex sheets with surface tension. SIAM J. Math. Anal. 35, 211-244. (doi:10.1137/S0036141002403869)
-
(2003)
SIAM J. Math. Anal
, vol.35
, pp. 211-244
-
-
Ambrose, D.M.1
-
2
-
-
85020824602
-
Well-posedness of 3D vortex sheets with surface tension
-
In press
-
Ambrose, D. M. & Masmoudi, N. In press. Well-posedness of 3D vortex sheets with surface tension. Quart. Appl. Math.
-
Quart. Appl. Math
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
3
-
-
0020191249
-
Generalized vortex methods for free-surface flow problems
-
doi:10.1017/S0022112082003164
-
Baker, G., Meiron, D. & Orszag, S. 1982 Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123, 477-501. (doi:10.1017/S0022112082003164)
-
(1982)
J. Fluid Mech
, vol.123
, pp. 477-501
-
-
Baker, G.1
Meiron, D.2
Orszag, S.3
-
4
-
-
84990576574
-
Growth rates for the linearized motion of fluid interfaces away from equilibrium
-
Beale, J. T., Hou, T. Y. & Lowengrub, J. S. 1993 Growth rates for the linearized motion of fluid interfaces away from equilibrium, Comm. Pure Appl. Math. 46, 1269-1301.
-
(1993)
Comm. Pure Appl. Math
, vol.46
, pp. 1269-1301
-
-
Beale, J.T.1
Hou, T.Y.2
Lowengrub, J.S.3
-
5
-
-
84963450929
-
Lagrangian theory for 3D vortex sheets with axial or helical symmetry
-
Caflisch, R. E. & Li, X.-F. 1992 Lagrangian theory for 3D vortex sheets with axial or helical symmetry. Transport Theory Stat. Phys. 21, 559-578.
-
(1992)
Transport Theory Stat. Phys
, vol.21
, pp. 559-578
-
-
Caflisch, R.E.1
Li, X.-F.2
-
6
-
-
84990556256
-
Long time existence for a slightly perturbed vortex sheet
-
Caflisch, R. &: Orellana, O. F. 1986 Long time existence for a slightly perturbed vortex sheet. Comm. Pure Appl. Math. 36, 807-838.
-
(1986)
Comm. Pure Appl. Math
, vol.36
, pp. 807-838
-
-
Caflisch, R.1
Orellana, O.F.2
-
7
-
-
34548446988
-
Well-posedness of the free-surface incompressible Euler equations with or without surface tension
-
In press
-
Coutand, D. & Shkoller, S. In press. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc.
-
J. Amer. Math. Soc
-
-
Coutand, D.1
Shkoller, S.2
-
8
-
-
84968509708
-
Existence de nappes de tourbillon en dimension deux
-
doi: 10.2307/2939269
-
Delort, J.-M. 1991 Existence de nappes de tourbillon en dimension deux. J. Am. Math. Soc. 4, 553-586. (doi: 10.2307/2939269)
-
(1991)
J. Am. Math. Soc
, vol.4
, pp. 553-586
-
-
Delort, J.-M.1
-
9
-
-
84968518816
-
Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity
-
doi:10.2307/2152727
-
Evans, L. C. & Müller, S. 1994 Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity. J. Am. Math. Soc. 7, 199-219. (doi:10.2307/2152727)
-
(1994)
J. Am. Math. Soc
, vol.7
, pp. 199-219
-
-
Evans, L.C.1
Müller, S.2
-
11
-
-
0038473867
-
A nearly optimal existence result for slightly perturbed 3D vortex sheets
-
doi:10.1081/PDE-120019378
-
Hou, T. & Hu, G. 2003 A nearly optimal existence result for slightly perturbed 3D vortex sheets. Comm. Partial Differ. Equations 28, 155-198. (doi:10.1081/PDE-120019378)
-
(2003)
Comm. Partial Differ. Equations
, vol.28
, pp. 155-198
-
-
Hou, T.1
Hu, G.2
-
12
-
-
0008283862
-
Removing the stiffness from interfacial flows with surface tension
-
doi:10.1006/jcph.l994.1170
-
Hou, T., Lowengrub, J. & Shelley, M. 1994 Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114, 312-338. (doi:10.1006/jcph.l994.1170)
-
(1994)
J. Comput. Phys
, vol.114
, pp. 312-338
-
-
Hou, T.1
Lowengrub, J.2
Shelley, M.3
-
13
-
-
0030870172
-
The long-time motion of vortex sheets with surface tension
-
doi:10.1063/1.869313
-
Hou, T., Lowengrub, J. & Shelley, M. 1997 The long-time motion of vortex sheets with surface tension. Phys. Fluids 9, 1933-1954. (doi:10.1063/1.869313)
-
(1997)
Phys. Fluids
, vol.9
, pp. 1933-1954
-
-
Hou, T.1
Lowengrub, J.2
Shelley, M.3
-
14
-
-
22544482964
-
Well-posedness of the water-waves equations
-
doi: 10.1090/S0894-0347-05-00484-4
-
Larmes, D. 2005 Well-posedness of the water-waves equations. J. Am. Math. Soc. 18, 605-654. (doi: 10.1090/S0894-0347-05-00484-4)
-
(2005)
J. Am. Math. Soc
, vol.18
, pp. 605-654
-
-
Larmes, D.1
-
15
-
-
17044425556
-
Régularité du problème de Kelvin-Helmholtz pour l'équation d'Euler 2d
-
doi:10.1051/cocv:2002052
-
Lebeau, G. 2002 Régularité du problème de Kelvin-Helmholtz pour l'équation d'Euler 2d. ESAIM Control Optim. Cale. Var. 8, 801 825. (doi:10.1051/cocv:2002052)
-
(2002)
ESAIM Control Optim. Cale. Var
, vol.8
, pp. 801-825
-
-
Lebeau, G.1
-
16
-
-
26044448758
-
Well-posedness for the motion of an incompressible liquid with free surface boundary
-
Lindblad, H. 2005 Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162, 109-194.
-
(2005)
Ann. Math
, vol.162
, pp. 109-194
-
-
Lindblad, H.1
-
17
-
-
0040438755
-
Existence of vortex sheets with reflection symmetry in two space dimensions
-
doi:10. 1007/S002050100145
-
Lopes Filho, M. C., Nussenzveig Lopes, H. J. & Xin, Z. 2001 Existence of vortex sheets with reflection symmetry in two space dimensions. Arch. Ration. Mech. Anal. 158, 235-257. (doi:10. 1007/S002050100145)
-
(2001)
Arch. Ration. Mech. Anal
, vol.158
, pp. 235-257
-
-
Lopes Filho, M.C.1
Nussenzveig Lopes, H.J.2
Xin, Z.3
-
18
-
-
0001496981
-
Remarks on weak solutions for vortex sheets with a distinguished sign
-
doi:10.1512/iumj.1993.42.42043
-
Majda, A. J. 1993 Remarks on weak solutions for vortex sheets with a distinguished sign. Ind. Univ. Math. J. 42, 921-939. (doi:10.1512/iumj.1993.42.42043)
-
(1993)
Ind. Univ. Math. J
, vol.42
, pp. 921-939
-
-
Majda, A.J.1
-
19
-
-
85040958017
-
-
Cambridge, UK: Cambridge University Press
-
Saffman, P. G. 1995 Vortex dynamics. Cambridge, UK: Cambridge University Press.
-
(1995)
Vortex dynamics
-
-
Saffman, P.G.1
-
20
-
-
0001257746
-
The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation
-
Schochet, S. 1995 The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation. Comm. Partial Differ. Equations 20, 1077-1104.
-
(1995)
Comm. Partial Differ. Equations
, vol.20
, pp. 1077-1104
-
-
Schochet, S.1
-
21
-
-
0031506263
-
Well-posedness in Sobolev spaces of the full water wave problem in 2-D
-
doi:10.1007/ s002220050177
-
Wu, S. 1997 Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130, 39-72. (doi:10.1007/ s002220050177)
-
(1997)
Invent. Math
, vol.130
, pp. 39-72
-
-
Wu, S.1
-
22
-
-
0033446356
-
Well-posedness in Sobolev spaces of the full water wave problem in 3-D
-
doi:10.1090/S0894-0347-99-00290-8
-
Wu, S. 1999 Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12, 445-495. (doi:10.1090/S0894-0347-99-00290-8)
-
(1999)
J. Am. Math. Soc
, vol.12
, pp. 445-495
-
-
Wu, S.1
-
23
-
-
33745626744
-
Mathematical analysis of vortex sheets
-
doi:10.1002/cpa.20110
-
Wu, S. 2006 Mathematical analysis of vortex sheets. Comm. Pure Appl. Math. 59, 1065-1206. (doi:10.1002/cpa.20110)
-
(2006)
Comm. Pure Appl. Math
, vol.59
, pp. 1065-1206
-
-
Wu, S.1
|