-
1
-
-
26944460000
-
The zero surface tension limit of two-dimensional water waves
-
Ambrose, D. M.; Masmoudi, N. The zero surface tension limit of two-dimensional water waves. Comm. Pure Appl Math. 58 (2005), no. 10, 1287-1315.
-
(2005)
Comm. Pure Appl Math
, vol.58
, Issue.10
, pp. 1287-1315
-
-
Ambrose, D.M.1
Masmoudi, N.2
-
2
-
-
84990576574
-
Growth rates for the linearized motion of fluid interfaces away from equilibrium
-
Beale, J. T.; Hou, T. Y.; Lowengrub, J. S. Growth rates for the linearized motion of fluid interfaces away from equilibrium. Comm. Pure Appl. Math. 46 (1993), no. 9, 1269-1301.
-
(1993)
Comm. Pure Appl. Math
, vol.46
, Issue.9
, pp. 1269-1301
-
-
Beale, J.T.1
Hou, T.Y.2
Lowengrub, J.S.3
-
3
-
-
0002793072
-
Polynomial growth estimates for multilinear singular integral operators
-
Christ, M.; Journé, J.-L. Polynomial growth estimates for multilinear singular integral operators. Acta Math. 159 (1987), no. 1-2, 51-80.
-
(1987)
Acta Math
, vol.159
, Issue.1-2
, pp. 51-80
-
-
Christ, M.1
Journé, J.-L.2
-
4
-
-
0034368951
-
On the motion of the free surface of a liquid
-
Christodoulou, D.; Lindblad, H. On the motion of the free surface of a liquid. Comm. Pure Appl. Math. 53 (2000), no. 12, 1536-1602.
-
(2000)
Comm. Pure Appl. Math
, vol.53
, Issue.12
, pp. 1536-1602
-
-
Christodoulou, D.1
Lindblad, H.2
-
5
-
-
34548446988
-
Well-posedness of the free-surface incompressible Euler equations with or without surface tension
-
electronic
-
Coutand, D.; Shkoller, S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc. 20 (2007), no. 3, 829-930 (electronic).
-
(2007)
J. Amer. Math. Soc
, vol.20
, Issue.3
, pp. 829-930
-
-
Coutand, D.1
Shkoller, S.2
-
6
-
-
0001688084
-
An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits
-
Craig, W. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations 10 (1985), no. 8, 787-1003.
-
(1985)
Comm. Partial Differential Equations
, vol.10
, Issue.8
, pp. 787-1003
-
-
Craig, W.1
-
7
-
-
0011555392
-
The equations of motion of a perfect fluid with free boundary are not well posed
-
Ebin, D. G. The equations of motion of a perfect fluid with free boundary are not well posed. Comm. Partial Differential Equations 12 (1987), no. 10, 1175-1201.
-
(1987)
Comm. Partial Differential Equations
, vol.12
, Issue.10
, pp. 1175-1201
-
-
Ebin, D.G.1
-
8
-
-
0003282768
-
Clifford algebras and Dirac operators in harmonic analysis
-
Cambridge University Press, Cambridge
-
Gilbert, J. E.; Murray, M. A. M. Clifford algebras and Dirac operators in harmonic analysis. Cambridge Studies in Advanced Mathematics, 26. Cambridge University Press, Cambridge, 1991.
-
(1991)
Cambridge Studies in Advanced Mathematics
, vol.26
-
-
Gilbert, J.E.1
Murray, M.A.M.2
-
9
-
-
0013228136
-
Well-posedness of linearized motion for 3-D water waves far from equilibrium
-
Hou, T. Y.; Teng, Z.; Zhang, P. Well-posedness of linearized motion for 3-D water waves far from equilibrium. Comm. Partial Differential Equations 21 (1996), no. 9-10, 1551-1585.
-
(1996)
Comm. Partial Differential Equations
, vol.21
, Issue.9-10
, pp. 1551-1585
-
-
Hou, T.Y.1
Teng, Z.2
Zhang, P.3
-
10
-
-
0012503150
-
On a free boundary problem for an incompressible ideal fluid in two space dimensions
-
Iguchi, T.; Tanaka, N.; Tani, A. On a free boundary problem for an incompressible ideal fluid in two space dimensions. Adv. Math. Sci. Appl. 9 (1999), no. 1, 415-472.
-
(1999)
Adv. Math. Sci. Appl
, vol.9
, Issue.1
, pp. 415-472
-
-
Iguchi, T.1
Tanaka, N.2
Tani, A.3
-
11
-
-
22544482964
-
Well-posedness of the water-waves equations
-
electronic
-
Lannes, D. Well-posedness of the water-waves equations. J. Amer. Math. Soc. 18 (2005), no. 3, 605-654 (electronic).
-
(2005)
J. Amer. Math. Soc
, vol.18
, Issue.3
, pp. 605-654
-
-
Lannes, D.1
-
12
-
-
26044448758
-
Well-posedness for the motion of an incompressible liquid with free surface boundary
-
Lindblad, H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. (2) 162 (2005), no. 1, 109-194.
-
(2005)
Ann. of Math. (2)
, vol.162
, Issue.1
, pp. 109-194
-
-
Lindblad, H.1
-
13
-
-
0003202932
-
Compressible fluid flow and systems of conservation laws in several space variables
-
Springer, New York
-
Majda; A. Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences, 53. Springer, New York, 1984.
-
(1984)
Applied Mathematical Sciences
, vol.53
-
-
Majda, A.1
-
14
-
-
0011932803
-
Clifford wavelets, singular integrals, and Hardy spaces
-
Springer, Berlin
-
Mitrea, M. Clifford wavelets, singular integrals, and Hardy spaces. Lecture Notes in Mathematics, 1575. Springer, Berlin, 1994.
-
(1994)
Lecture Notes in Mathematics
, vol.1575
-
-
Mitrea, M.1
-
15
-
-
0000306561
-
The Cauchy-Poisson problem
-
vyp. 18 Dinamika Zidkost. so Svobod. Granicami
-
Nalimov, V. I. The Cauchy-Poisson problem. Dinamika Splošn. Sredy, vyp. 18 Dinamika Zidkost. so Svobod. Granicami (1974), 104-210.
-
(1974)
Dinamika Splošn. Sredy
, pp. 104-210
-
-
Nalimov, V.I.1
-
16
-
-
0036951682
-
Free boundary problem for an incompressible ideal fluid with surface tension
-
Ogawa, M.; Tani, A. Free boundary problem for an incompressible ideal fluid with surface tension. Math. Models Methods Appl. Sci. 12 (2002), no. 12, 1725-1740.
-
(2002)
Math. Models Methods Appl. Sci
, vol.12
, Issue.12
, pp. 1725-1740
-
-
Ogawa, M.1
Tani, A.2
-
17
-
-
33645568794
-
Incompressible perfect fluid motion with free boundary of finite depth
-
Ogawa, M.; Tani, A. Incompressible perfect fluid motion with free boundary of finite depth. Adv. Math. Sci. Appl. 13 (2003), no. 1, 201-223.
-
(2003)
Adv. Math. Sci. Appl
, vol.13
, Issue.1
, pp. 201-223
-
-
Ogawa, M.1
Tani, A.2
-
18
-
-
52349115044
-
Geometry and a priori estimates for free boundary problems of the Euler's equation
-
forthcoming
-
Shatah, J.; Zeng, C. Geometry and a priori estimates for free boundary problems of the Euler's equation. Comm. Pure Appl. Math. (2007), forthcoming.
-
(2007)
Comm. Pure Appl. Math
-
-
Shatah, J.1
Zeng, C.2
-
19
-
-
0003201639
-
Singular integrals and differentiability properties of functions
-
Princeton University Press, Princeton, N.J
-
Stein, E. M. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, 30. Princeton University Press, Princeton, N.J. 1970.
-
(1970)
Princeton Mathematical Series
, vol.30
-
-
Stein, E.M.1
-
20
-
-
0031506263
-
Well-posedness in Sobolev spaces of the full water wave problem in 2-D
-
Wu, S. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130 (1997), no. 1, 39-72.
-
(1997)
Invent. Math
, vol.130
, Issue.1
, pp. 39-72
-
-
Wu, S.1
-
21
-
-
0033446356
-
Well-posedness in Sobolev spaces of the full water wave problem in 3-D
-
Wu, S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc. 12 (1999), no. 2, 445-495.
-
(1999)
J. Amer. Math. Soc
, vol.12
, Issue.2
, pp. 445-495
-
-
Wu, S.1
-
22
-
-
85009585833
-
Gravity waves on the free surface of an incompressible perfect fluid of finite depth
-
Yosihara, H. Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 49-96.
-
(1982)
Publ. Res. Inst. Math. Sci
, vol.18
, Issue.1
, pp. 49-96
-
-
Yosihara, H.1
-
23
-
-
34548424025
-
On the local well posedness of 3D water wave problem with vorticity
-
Zhang, P.; Zhang, Z. On the local well posedness of 3D water wave problem with vorticity. Sci. China Ser. A 50 (2007), 1065-1077.
-
(2007)
Sci. China Ser. A
, vol.50
, pp. 1065-1077
-
-
Zhang, P.1
Zhang, Z.2
|