메뉴 건너뛰기




Volumn 19, Issue 1, 2018, Pages 6-9

Artificial intelligence will reduce the need for clinical medical physicists

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; HEALTH PHYSICS;

EID: 85040554337     PISSN: None     EISSN: 15269914     Source Type: Journal    
DOI: 10.1002/acm2.12244     Document Type: Editorial
Times cited : (30)

References (15)
  • 1
    • 84999828423 scopus 로고    scopus 로고
    • The future of employment: how susceptible are jobs to computerisation?
    • Frey CB, Osborne MA. The future of employment: how susceptible are jobs to computerisation? Technol Forecast Soc Chang. 2017;114:254-280.
    • (2017) Technol Forecast Soc Chang , vol.114 , pp. 254-280
    • Frey, C.B.1    Osborne, M.A.2
  • 2
    • 85040577975 scopus 로고    scopus 로고
    • How much will AI decrease the need for human labor?
    • Jan 18
    • Quora. How much will AI decrease the need for human labor? Forbes.com. Jan 18, 2017.
    • (2017) Forbes.com.
  • 3
    • 84890041294 scopus 로고    scopus 로고
    • Modeling the dosimetry of organ-at-risk in head and neck IMRT planning: an intertechnique and interinstitutional study
    • Lian J, Yuan L, Ge Y, et al. Modeling the dosimetry of organ-at-risk in head and neck IMRT planning: an intertechnique and interinstitutional study. Med Phys. 2013;40:121704.
    • (2013) Med Phys , vol.40 , pp. 121704
    • Lian, J.1    Yuan, L.2    Ge, Y.3
  • 4
    • 84923343865 scopus 로고    scopus 로고
    • Knowledge-based prediction of plan quality metrics in intracranial stereotactic radiosurgery
    • Shiraishi S, Tan J, Olsen LA, Moore KL. Knowledge-based prediction of plan quality metrics in intracranial stereotactic radiosurgery. Med Phys. 2015;42:908.
    • (2015) Med Phys , vol.42 , pp. 908
    • Shiraishi, S.1    Tan, J.2    Olsen, L.A.3    Moore, K.L.4
  • 5
    • 84922570873 scopus 로고    scopus 로고
    • Standardized beam bouquets for lung IMRT planning
    • Yuan L, Wu QJ, Yin F, et al. Standardized beam bouquets for lung IMRT planning. Phys Med Biol. 2015;60:1831-1843.
    • (2015) Phys Med Biol , vol.60 , pp. 1831-1843
    • Yuan, L.1    Wu, Q.J.2    Yin, F.3
  • 6
    • 84868574970 scopus 로고    scopus 로고
    • Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans
    • Yuan LL, Ge YR, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Med Phys. 2012;39:6868-6878.
    • (2012) Med Phys , vol.39 , pp. 6868-6878
    • Yuan, L.L.1    Ge, Y.R.2    Lee, W.R.3    Yin, F.F.4    Kirkpatrick, J.P.5    Wu, Q.J.6
  • 7
    • 85087013362 scopus 로고    scopus 로고
    • Assessment of a knowledge-based RapidPlan model for patients with postoperative cervical cancer
    • Ma CH. Assessment of a knowledge-based RapidPlan model for patients with postoperative cervical cancer. Precis Radiat Oncol. 2017;23:102-107.
    • (2017) Precis Radiat Oncol , vol.23 , pp. 102-107
    • Ma, C.H.1
  • 8
    • 84946716155 scopus 로고    scopus 로고
    • Evaluation of an automated knowledge based treatment planning system for head and neck
    • Krayenbuehl J, Norton I, Studer G, Guckenberger M. Evaluation of an automated knowledge based treatment planning system for head and neck. Radiat Oncol. 2015;10:226.
    • (2015) Radiat Oncol , vol.10 , pp. 226
    • Krayenbuehl, J.1    Norton, I.2    Studer, G.3    Guckenberger, M.4
  • 9
    • 85040545054 scopus 로고    scopus 로고
    • Automatic segmentation of brain tumors from MR images using undecimated wavelet transform and gabor wavelets IEEE
    • Mirajkar G, Barbadekar B. Automatic segmentation of brain tumors from MR images using undecimated wavelet transform and gabor wavelets IEEE. 2011: 4.
    • (2011) , pp. 4
    • Mirajkar, G.1    Barbadekar, B.2
  • 10
    • 84867746317 scopus 로고    scopus 로고
    • Automatic segmentation of lung nodules with growing neural gas and support vector machine
    • Netto SMB, Silva AC, Nunes RA, Gattass M. Automatic segmentation of lung nodules with growing neural gas and support vector machine. Comput Biol Med. 2012;42:1110-1121.
    • (2012) Comput Biol Med , vol.42 , pp. 1110-1121
    • Netto, S.M.B.1    Silva, A.C.2    Nunes, R.A.3    Gattass, M.4
  • 11
    • 85010870099 scopus 로고    scopus 로고
    • Visual analysis of the daily QA results of photon and electron beams of a trilogy linac over a five-year period
    • Chan MF, Li Q, Tang X, et al. Visual analysis of the daily QA results of photon and electron beams of a trilogy linac over a five-year period. Int J Med Phys Clin Eng Radiat Oncol. 2015;4:290-299.
    • (2015) Int J Med Phys Clin Eng Radiat Oncol , vol.4 , pp. 290-299
    • Chan, M.F.1    Li, Q.2    Tang, X.3
  • 12
    • 73649094868 scopus 로고
    • The role of the clinical medical physicist in diagnostic radiology
    • AAPM Task Group
    • Gray JB. The role of the clinical medical physicist in diagnostic radiology. AAPM Task Group. 1994;42.
    • (1994) , vol.42
    • Gray, J.B.1
  • 13
    • 85044367983 scopus 로고    scopus 로고
    • How artificial intelligence will change medical imaging
    • Artificial Intelligence. Feb 24
    • Fornell D. How artificial intelligence will change medical imaging. Artificial Intelligence. Feb 24, 2017.
    • (2017)
    • Fornell, D.1
  • 15
    • 82755198678 scopus 로고    scopus 로고
    • The tenuous state of clinical medical physics in diagnostic imaging
    • Samei E, Anthony SJ. The tenuous state of clinical medical physics in diagnostic imaging. Med Phys. 2011;38:3-4.
    • (2011) Med Phys , vol.38 , pp. 3-4
    • Samei, E.1    Anthony, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.