메뉴 건너뛰기




Volumn 18, Issue 5, 2017, Pages 279-284

IMRT QA using machine learning: A multi-institutional validation

Author keywords

IMRT QA; Machine learning; Poisson regression; Radiotherapy

Indexed keywords

CLINICAL TRIAL; HEALTH CARE QUALITY; HUMAN; INTENSITY MODULATED RADIATION THERAPY; MACHINE LEARNING; MULTICENTER STUDY; RADIOMETRY; RADIOTHERAPY DOSAGE; STANDARDS; VALIDATION STUDY;

EID: 85027501141     PISSN: None     EISSN: 15269914     Source Type: Journal    
DOI: 10.1002/acm2.12161     Document Type: Article
Times cited : (129)

References (25)
  • 2
    • 67651115903 scopus 로고    scopus 로고
    • Modeling plan-related clinical complications using machine learning tools in a multiplan IMRT framework
    • Zhang HH, D'Souza WD, Shi L, Meyer RR. Modeling plan-related clinical complications using machine learning tools in a multiplan IMRT framework. Int J Radiat Oncol Biol Phys. 2009;74:1617-1626.
    • (2009) Int J Radiat Oncol Biol Phys , vol.74 , pp. 1617-1626
    • Zhang, H.H.1    D'Souza, W.D.2    Shi, L.3    Meyer, R.R.4
  • 3
    • 84874891936 scopus 로고    scopus 로고
    • The future of predictive models in radiation oncology: from extensive data mining to reliable modeling of the results
    • Valentini V, Dinapoli N, Damiani A. The future of predictive models in radiation oncology: from extensive data mining to reliable modeling of the results. Future Oncol. 2013;9:311-313.
    • (2013) Future Oncol , vol.9 , pp. 311-313
    • Valentini, V.1    Dinapoli, N.2    Damiani, A.3
  • 4
    • 84933059854 scopus 로고    scopus 로고
    • A data-mining framework for large scale analysis of dose-outcome relationships in a database of irradiated head and neck cancer patients
    • Robertson SP, Quon H, Kiess AP, et al. A data-mining framework for large scale analysis of dose-outcome relationships in a database of irradiated head and neck cancer patients. Med Phys. 2015;42:4329-4337.
    • (2015) Med Phys , vol.42 , pp. 4329-4337
    • Robertson, S.P.1    Quon, H.2    Kiess, A.P.3
  • 5
    • 84946716146 scopus 로고    scopus 로고
    • Machine learning approaches for predicting radiation therapy outcomes: a clinician's perspective
    • Kang J, Schwartz R, Flickinger J, Beriwal S. Machine learning approaches for predicting radiation therapy outcomes: a clinician's perspective. Int J Radiat Oncol Biol Phys. 2015;93:1127-1135.
    • (2015) Int J Radiat Oncol Biol Phys , vol.93 , pp. 1127-1135
    • Kang, J.1    Schwartz, R.2    Flickinger, J.3    Beriwal, S.4
  • 6
    • 84957588157 scopus 로고    scopus 로고
    • Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malformations
    • Oermann EK, Rubinsteyn A, Ding D, et al. Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malformations. Sci Rep. 2016;6:21161.
    • (2016) Sci Rep , vol.6 , pp. 21161
    • Oermann, E.K.1    Rubinsteyn, A.2    Ding, D.3
  • 7
    • 84984698490 scopus 로고    scopus 로고
    • Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy
    • Valdes G, Solberg TD, Heskel M, Ungar L, Simone CB II. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys Med Biol. 2016;61:6105.
    • (2016) Phys Med Biol , vol.61 , pp. 6105
    • Valdes, G.1    Solberg, T.D.2    Heskel, M.3    Ungar, L.4    Simone, C.B.5
  • 8
    • 85029456882 scopus 로고    scopus 로고
    • Implementation of a machine learning-based automatic contour quality assurance tool for online adaptive radiation therapy of prostate cancer
    • Zhang J, Ates O, Li A. Implementation of a machine learning-based automatic contour quality assurance tool for online adaptive radiation therapy of prostate cancer. Int J Radiat Oncol Biol Phys. 2016;96:E668.
    • (2016) Int J Radiat Oncol Biol Phys , vol.96 , pp. E668
    • Zhang, J.1    Ates, O.2    Li, A.3
  • 9
    • 84896320732 scopus 로고    scopus 로고
    • Prior-knowledge treatment planning for volumetric arc therapy using feature-based database mining
    • Schreibmann E, Fox T. Prior-knowledge treatment planning for volumetric arc therapy using feature-based database mining. J Appl Clinic Med Phys. 2014;15:19-27.
    • (2014) J Appl Clinic Med Phys , vol.15 , pp. 19-27
    • Schreibmann, E.1    Fox, T.2
  • 10
    • 84920732555 scopus 로고    scopus 로고
    • Data mining to aid beam angle selection for intensity-modulated radiation therapy
    • Paper presented at: Proceedings of the 5th ACM conference on bioinformatics, computational biology, and health informatics.
    • Price S, Golden B, Wasil E, Zhang HH. Data mining to aid beam angle selection for intensity-modulated radiation therapy. Paper presented at: Proceedings of the 5th ACM conference on bioinformatics, computational biology, and health informatics. 2014.
    • (2014)
    • Price, S.1    Golden, B.2    Wasil, E.3    Zhang, H.H.4
  • 11
    • 84930959159 scopus 로고    scopus 로고
    • Utilizing knowledge from prior plans in the evaluation of quality assurance
    • Stanhope C, Wu QJ, Yuan L, et al. Utilizing knowledge from prior plans in the evaluation of quality assurance. Phys Med Biol. 2015;60:4873.
    • (2015) Phys Med Biol , vol.60 , pp. 4873
    • Stanhope, C.1    Wu, Q.J.2    Yuan, L.3
  • 12
    • 84961778070 scopus 로고    scopus 로고
    • A machine learning approach to the accurate prediction of multi-leaf collimator positional errors
    • Carlson JN, Park JM, Park S-Y, Park JI, Choi Y, Ye S-J. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors. Phys Med Biol. 2016;61:2514.
    • (2016) Phys Med Biol , vol.61 , pp. 2514
    • Carlson, J.N.1    Park, J.M.2    Park, S.-Y.3    Park, J.I.4    Choi, Y.5    Ye, S.-J.6
  • 13
    • 85029433753 scopus 로고    scopus 로고
    • EP-1329: data mining applied to a radiotherapy department: developing quality assurance tools for risk management
    • Tomatis S, Palumbo V, D'Agostino G, et al. EP-1329: data mining applied to a radiotherapy department: developing quality assurance tools for risk management. Radiother Oncol. 2015;115:S718.
    • (2015) Radiother Oncol , vol.115 , pp. S718
    • Tomatis, S.1    Palumbo, V.2    D'Agostino, G.3
  • 14
    • 84947474571 scopus 로고    scopus 로고
    • Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations
    • Bojechko C, Ford E. Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations. Med Phys. 2015;42:6912-6918.
    • (2015) Med Phys , vol.42 , pp. 6912-6918
    • Bojechko, C.1    Ford, E.2
  • 15
    • 84866728511 scopus 로고    scopus 로고
    • Quality control quantification (QCQ): a tool to measure the value of quality control checks in radiation oncology
    • Ford EC, Terezakis S, Souranis A, Harris K, Gay H, Mutic S. Quality control quantification (QCQ): a tool to measure the value of quality control checks in radiation oncology. Int J Radiat Oncol Biol Phys. 2012;84:e263-e269.
    • (2012) Int J Radiat Oncol Biol Phys , vol.84 , pp. e263-e269
    • Ford, E.C.1    Terezakis, S.2    Souranis, A.3    Harris, K.4    Gay, H.5    Mutic, S.6
  • 16
    • 84987711717 scopus 로고    scopus 로고
    • Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study
    • Li Q, Chan MF. Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study. Ann N Y Acad Sci. 2017;1387:84-94.
    • (2017) Ann N Y Acad Sci , vol.1387 , pp. 84-94
    • Li, Q.1    Chan, M.F.2
  • 17
    • 85010870099 scopus 로고    scopus 로고
    • Visual analysis of the daily QA results of photon and electron beams of a trilogy linac over a five-year period
    • Chan MF, Li Q, Tang X, et al. Visual analysis of the daily QA results of photon and electron beams of a trilogy linac over a five-year period. Int J Med Phys Clin Eng Radiat Oncol. 2015;4:290.
    • (2015) Int J Med Phys Clin Eng Radiat Oncol , vol.4 , pp. 290
    • Chan, M.F.1    Li, Q.2    Tang, X.3
  • 18
    • 85024808302 scopus 로고    scopus 로고
    • SU-E-J-69: an anomaly detector for radiotherapy quality assurance using machine learning
    • El Naqa I. SU-E-J-69: an anomaly detector for radiotherapy quality assurance using machine learning. Med Phys. 2011;38:3458-3458.
    • (2011) Med Phys , vol.38 , pp. 3458-3458
    • El Naqa, I.1
  • 21
    • 84975268143 scopus 로고    scopus 로고
    • The report of Task Group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management
    • Huq MS, Fraass BA, Dunscombe PB, et al. The report of Task Group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43:4209-4262.
    • (2016) Med Phys , vol.43 , pp. 4209-4262
    • Huq, M.S.1    Fraass, B.A.2    Dunscombe, P.B.3
  • 23
    • 41449100285 scopus 로고    scopus 로고
    • The impact of MLC transmitted radiation on EPID dosimetry for dynamic MLC beams
    • Vial P, Greer PB, Hunt P, Oliver L, Baldock C. The impact of MLC transmitted radiation on EPID dosimetry for dynamic MLC beams. Med Phys. 2008;35:1267-1277.
    • (2008) Med Phys , vol.35 , pp. 1267-1277
    • Vial, P.1    Greer, P.B.2    Hunt, P.3    Oliver, L.4    Baldock, C.5
  • 24
    • 84979866925 scopus 로고    scopus 로고
    • Comparison between an in-house 1D profile correction method and a 2D correction provided in Varian's PDPC Package for improving the accuracy of portal dosimetry images
    • Hobson MA, Davis SD. Comparison between an in-house 1D profile correction method and a 2D correction provided in Varian's PDPC Package for improving the accuracy of portal dosimetry images. J Appl Clinic Med Phys. 2015;16:43-50.
    • (2015) J Appl Clinic Med Phys , vol.16 , pp. 43-50
    • Hobson, M.A.1    Davis, S.D.2
  • 25
    • 84889647084 scopus 로고    scopus 로고
    • Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels
    • Nelms BE, Chan MF, Jarry G, et al. Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels. Med Phys. 2013;40:111722-111737.
    • (2013) Med Phys , vol.40 , pp. 111722-111737
    • Nelms, B.E.1    Chan, M.F.2    Jarry, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.