-
2
-
-
67651115903
-
Modeling plan-related clinical complications using machine learning tools in a multiplan IMRT framework
-
Zhang HH, D'Souza WD, Shi L, Meyer RR. Modeling plan-related clinical complications using machine learning tools in a multiplan IMRT framework. Int J Radiat Oncol Biol Phys. 2009;74:1617-1626.
-
(2009)
Int J Radiat Oncol Biol Phys
, vol.74
, pp. 1617-1626
-
-
Zhang, H.H.1
D'Souza, W.D.2
Shi, L.3
Meyer, R.R.4
-
3
-
-
84874891936
-
The future of predictive models in radiation oncology: from extensive data mining to reliable modeling of the results
-
Valentini V, Dinapoli N, Damiani A. The future of predictive models in radiation oncology: from extensive data mining to reliable modeling of the results. Future Oncol. 2013;9:311-313.
-
(2013)
Future Oncol
, vol.9
, pp. 311-313
-
-
Valentini, V.1
Dinapoli, N.2
Damiani, A.3
-
4
-
-
84933059854
-
A data-mining framework for large scale analysis of dose-outcome relationships in a database of irradiated head and neck cancer patients
-
Robertson SP, Quon H, Kiess AP, et al. A data-mining framework for large scale analysis of dose-outcome relationships in a database of irradiated head and neck cancer patients. Med Phys. 2015;42:4329-4337.
-
(2015)
Med Phys
, vol.42
, pp. 4329-4337
-
-
Robertson, S.P.1
Quon, H.2
Kiess, A.P.3
-
5
-
-
84946716146
-
Machine learning approaches for predicting radiation therapy outcomes: a clinician's perspective
-
Kang J, Schwartz R, Flickinger J, Beriwal S. Machine learning approaches for predicting radiation therapy outcomes: a clinician's perspective. Int J Radiat Oncol Biol Phys. 2015;93:1127-1135.
-
(2015)
Int J Radiat Oncol Biol Phys
, vol.93
, pp. 1127-1135
-
-
Kang, J.1
Schwartz, R.2
Flickinger, J.3
Beriwal, S.4
-
6
-
-
84957588157
-
Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malformations
-
Oermann EK, Rubinsteyn A, Ding D, et al. Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malformations. Sci Rep. 2016;6:21161.
-
(2016)
Sci Rep
, vol.6
, pp. 21161
-
-
Oermann, E.K.1
Rubinsteyn, A.2
Ding, D.3
-
7
-
-
84984698490
-
Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy
-
Valdes G, Solberg TD, Heskel M, Ungar L, Simone CB II. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys Med Biol. 2016;61:6105.
-
(2016)
Phys Med Biol
, vol.61
, pp. 6105
-
-
Valdes, G.1
Solberg, T.D.2
Heskel, M.3
Ungar, L.4
Simone, C.B.5
-
8
-
-
85029456882
-
Implementation of a machine learning-based automatic contour quality assurance tool for online adaptive radiation therapy of prostate cancer
-
Zhang J, Ates O, Li A. Implementation of a machine learning-based automatic contour quality assurance tool for online adaptive radiation therapy of prostate cancer. Int J Radiat Oncol Biol Phys. 2016;96:E668.
-
(2016)
Int J Radiat Oncol Biol Phys
, vol.96
, pp. E668
-
-
Zhang, J.1
Ates, O.2
Li, A.3
-
9
-
-
84896320732
-
Prior-knowledge treatment planning for volumetric arc therapy using feature-based database mining
-
Schreibmann E, Fox T. Prior-knowledge treatment planning for volumetric arc therapy using feature-based database mining. J Appl Clinic Med Phys. 2014;15:19-27.
-
(2014)
J Appl Clinic Med Phys
, vol.15
, pp. 19-27
-
-
Schreibmann, E.1
Fox, T.2
-
10
-
-
84920732555
-
Data mining to aid beam angle selection for intensity-modulated radiation therapy
-
Paper presented at: Proceedings of the 5th ACM conference on bioinformatics, computational biology, and health informatics.
-
Price S, Golden B, Wasil E, Zhang HH. Data mining to aid beam angle selection for intensity-modulated radiation therapy. Paper presented at: Proceedings of the 5th ACM conference on bioinformatics, computational biology, and health informatics. 2014.
-
(2014)
-
-
Price, S.1
Golden, B.2
Wasil, E.3
Zhang, H.H.4
-
11
-
-
84930959159
-
Utilizing knowledge from prior plans in the evaluation of quality assurance
-
Stanhope C, Wu QJ, Yuan L, et al. Utilizing knowledge from prior plans in the evaluation of quality assurance. Phys Med Biol. 2015;60:4873.
-
(2015)
Phys Med Biol
, vol.60
, pp. 4873
-
-
Stanhope, C.1
Wu, Q.J.2
Yuan, L.3
-
12
-
-
84961778070
-
A machine learning approach to the accurate prediction of multi-leaf collimator positional errors
-
Carlson JN, Park JM, Park S-Y, Park JI, Choi Y, Ye S-J. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors. Phys Med Biol. 2016;61:2514.
-
(2016)
Phys Med Biol
, vol.61
, pp. 2514
-
-
Carlson, J.N.1
Park, J.M.2
Park, S.-Y.3
Park, J.I.4
Choi, Y.5
Ye, S.-J.6
-
13
-
-
85029433753
-
EP-1329: data mining applied to a radiotherapy department: developing quality assurance tools for risk management
-
Tomatis S, Palumbo V, D'Agostino G, et al. EP-1329: data mining applied to a radiotherapy department: developing quality assurance tools for risk management. Radiother Oncol. 2015;115:S718.
-
(2015)
Radiother Oncol
, vol.115
, pp. S718
-
-
Tomatis, S.1
Palumbo, V.2
D'Agostino, G.3
-
14
-
-
84947474571
-
Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations
-
Bojechko C, Ford E. Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations. Med Phys. 2015;42:6912-6918.
-
(2015)
Med Phys
, vol.42
, pp. 6912-6918
-
-
Bojechko, C.1
Ford, E.2
-
15
-
-
84866728511
-
Quality control quantification (QCQ): a tool to measure the value of quality control checks in radiation oncology
-
Ford EC, Terezakis S, Souranis A, Harris K, Gay H, Mutic S. Quality control quantification (QCQ): a tool to measure the value of quality control checks in radiation oncology. Int J Radiat Oncol Biol Phys. 2012;84:e263-e269.
-
(2012)
Int J Radiat Oncol Biol Phys
, vol.84
, pp. e263-e269
-
-
Ford, E.C.1
Terezakis, S.2
Souranis, A.3
Harris, K.4
Gay, H.5
Mutic, S.6
-
16
-
-
84987711717
-
Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study
-
Li Q, Chan MF. Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study. Ann N Y Acad Sci. 2017;1387:84-94.
-
(2017)
Ann N Y Acad Sci
, vol.1387
, pp. 84-94
-
-
Li, Q.1
Chan, M.F.2
-
17
-
-
85010870099
-
Visual analysis of the daily QA results of photon and electron beams of a trilogy linac over a five-year period
-
Chan MF, Li Q, Tang X, et al. Visual analysis of the daily QA results of photon and electron beams of a trilogy linac over a five-year period. Int J Med Phys Clin Eng Radiat Oncol. 2015;4:290.
-
(2015)
Int J Med Phys Clin Eng Radiat Oncol
, vol.4
, pp. 290
-
-
Chan, M.F.1
Li, Q.2
Tang, X.3
-
18
-
-
85024808302
-
SU-E-J-69: an anomaly detector for radiotherapy quality assurance using machine learning
-
El Naqa I. SU-E-J-69: an anomaly detector for radiotherapy quality assurance using machine learning. Med Phys. 2011;38:3458-3458.
-
(2011)
Med Phys
, vol.38
, pp. 3458-3458
-
-
El Naqa, I.1
-
19
-
-
84938919088
-
Use of TrueBeam developer mode for imaging QA
-
Valdes G, Morin O, Valenciaga Y, Kirby N, Pouliot J, Chuang C. Use of TrueBeam developer mode for imaging QA. J Appl Clin Med Phys. 2015;16:322-333.
-
(2015)
J Appl Clin Med Phys
, vol.16
, pp. 322-333
-
-
Valdes, G.1
Morin, O.2
Valenciaga, Y.3
Kirby, N.4
Pouliot, J.5
Chuang, C.6
-
20
-
-
84975512963
-
A mathematical framework for virtual IMRT QA using machine learning
-
Valdes G, Scheuermann R, Hung C, Olszanski A, Bellerive M, Solberg T. A mathematical framework for virtual IMRT QA using machine learning. Med Phys. 2016;43:4323-4334.
-
(2016)
Med Phys
, vol.43
, pp. 4323-4334
-
-
Valdes, G.1
Scheuermann, R.2
Hung, C.3
Olszanski, A.4
Bellerive, M.5
Solberg, T.6
-
21
-
-
84975268143
-
The report of Task Group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management
-
Huq MS, Fraass BA, Dunscombe PB, et al. The report of Task Group 100 of the AAPM: application of risk analysis methods to radiation therapy quality management. Med Phys. 2016;43:4209-4262.
-
(2016)
Med Phys
, vol.43
, pp. 4209-4262
-
-
Huq, M.S.1
Fraass, B.A.2
Dunscombe, P.B.3
-
22
-
-
0003684449
-
-
2nd ed. Stanford, CA: Springer;
-
Hastie T, Friedman JH, Tibshirani R. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Stanford, CA: Springer; 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Friedman, J.H.2
Tibshirani, R.3
-
23
-
-
41449100285
-
The impact of MLC transmitted radiation on EPID dosimetry for dynamic MLC beams
-
Vial P, Greer PB, Hunt P, Oliver L, Baldock C. The impact of MLC transmitted radiation on EPID dosimetry for dynamic MLC beams. Med Phys. 2008;35:1267-1277.
-
(2008)
Med Phys
, vol.35
, pp. 1267-1277
-
-
Vial, P.1
Greer, P.B.2
Hunt, P.3
Oliver, L.4
Baldock, C.5
-
24
-
-
84979866925
-
Comparison between an in-house 1D profile correction method and a 2D correction provided in Varian's PDPC Package for improving the accuracy of portal dosimetry images
-
Hobson MA, Davis SD. Comparison between an in-house 1D profile correction method and a 2D correction provided in Varian's PDPC Package for improving the accuracy of portal dosimetry images. J Appl Clinic Med Phys. 2015;16:43-50.
-
(2015)
J Appl Clinic Med Phys
, vol.16
, pp. 43-50
-
-
Hobson, M.A.1
Davis, S.D.2
-
25
-
-
84889647084
-
Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels
-
Nelms BE, Chan MF, Jarry G, et al. Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels. Med Phys. 2013;40:111722-111737.
-
(2013)
Med Phys
, vol.40
, pp. 111722-111737
-
-
Nelms, B.E.1
Chan, M.F.2
Jarry, G.3
|