메뉴 건너뛰기




Volumn 1387, Issue 1, 2017, Pages 84-94

Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study

Author keywords

ANNs; ARMA; artificial neural networks; autoregressive moving average; Linac QA; predictive time series analytics; radiotherapy

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; CANCER PATIENT; CANCER RADIOTHERAPY; CANCER THERAPY; COMPARATIVE STUDY; DOSIMETRY; EMPIRICISM; HEALTH CARE QUALITY; HUMAN; LINAC BEAM SYMMETRY; LINEAR ACCELERATOR; MACHINE LEARNING; PATIENT SAFETY; PREDICTION; QUALITY CONTROL; TIME SERIES ANALYSIS; ADVERSE EFFECTS; BAYES THEOREM; BIOLOGICAL MODEL; BIOLOGY; DEVICES; EMPIRICAL RESEARCH; FACTUAL DATABASE; FORECASTING; IN VIVO DOSIMETRY; KINETICS; LONGITUDINAL STUDY; NEOPLASMS; PROCEDURES; RADIOSURGERY; REGRESSION ANALYSIS; REPRODUCIBILITY; VALIDATION STUDY;

EID: 84987711717     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.13215     Document Type: Article
Times cited : (51)

References (20)
  • 1
    • 84905050551 scopus 로고    scopus 로고
    • Accessed July 26, 2016
    • National Cancer Institute. 2010. Radiation therapy for cancer. Accessed July 26, 2016. http://www.cancer.gov/about-cancer/treatment/types/radiation-therapy/radiation-fact-sheet.
    • (2010) Radiation therapy for cancer
  • 3
    • 14844290322 scopus 로고    scopus 로고
    • Quality assurance in radiotherapy: evaluation of errors and incidents recorded over a 10-year period
    • Yeung, T.K. et al. 2005. Quality assurance in radiotherapy: evaluation of errors and incidents recorded over a 10-year period. Radiother. Oncol. 74: 283–291.
    • (2005) Radiother. Oncol. , vol.74 , pp. 283-291
    • Yeung, T.K.1
  • 4
    • 55149093007 scopus 로고    scopus 로고
    • Quality assurance of radiotherapy in cancer treatment: toward improvement of patient safety and quality of care
    • Ishikura, S. 2008. Quality assurance of radiotherapy in cancer treatment: toward improvement of patient safety and quality of care. Jpn. J. Clin. Oncol. 38: 723–729.
    • (2008) Jpn. J. Clin. Oncol. , vol.38 , pp. 723-729
    • Ishikura, S.1
  • 5
    • 84872006858 scopus 로고    scopus 로고
    • The impact of new technologies on radiation oncology events and trends in the past decade: an institutional experience
    • Hunt, M.A. et al. 2012. The impact of new technologies on radiation oncology events and trends in the past decade: an institutional experience. Int. J. Radiat. Oncol. Biol. Phys. 84: 925–931.
    • (2012) Int. J. Radiat. Oncol. Biol. Phys. , vol.84 , pp. 925-931
    • Hunt, M.A.1
  • 6
    • 84866728511 scopus 로고    scopus 로고
    • Quality control quantification (QCQ): a tool to measure the value of quality control checks in radiation oncology
    • Ford, E.C. et al. 2012. Quality control quantification (QCQ): a tool to measure the value of quality control checks in radiation oncology. Int. J. Radiat. Oncol. Biol. Phys. 84: e263–e269.
    • (2012) Int. J. Radiat. Oncol. Biol. Phys. , vol.84 , pp. e263-e269
    • Ford, E.C.1
  • 7
    • 85010870099 scopus 로고    scopus 로고
    • Visual analysis of the daily QA results of photon and electron beams of a trilogy linac over a five-year period
    • Chan, M.F. et al. 2015. Visual analysis of the daily QA results of photon and electron beams of a trilogy linac over a five-year period. Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 4: 290–299.
    • (2015) Int. J. Med. Phys. Clin. Eng. Radiat. Oncol , vol.4 , pp. 290-299
    • Chan, M.F.1
  • 11
    • 84975512963 scopus 로고    scopus 로고
    • A mathematical framework for virtual IMRT QA using machine learning
    • Valdes, G. et al. 2016. A mathematical framework for virtual IMRT QA using machine learning. Med. Phys. 43: 4323–4334.
    • (2016) Med. Phys. , vol.43 , pp. 4323-4334
    • Valdes, G.1
  • 12
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang, G., B.E. Patuwo & M.Y. Hu. 1998. Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14: 35–62.
    • (1998) Int. J. Forecast. , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 14
    • 0035364957 scopus 로고    scopus 로고
    • Time series forecasting with neural network ensembles: an application for exchange rate prediction
    • Zhang, G.P. & V. Berardi. 2001. Time series forecasting with neural network ensembles: an application for exchange rate prediction. J. Oper. Res. Soc. 52: 652–664.
    • (2001) J. Oper. Res. Soc. , vol.52 , pp. 652-664
    • Zhang, G.P.1    Berardi, V.2
  • 15
    • 27744467138 scopus 로고    scopus 로고
    • A comparative study of autoregressive neural network hybrids
    • Taskaya-Temizel, T. & M.C. Casey. 2005. A comparative study of autoregressive neural network hybrids. Neural Netw. 18: 781–789.
    • (2005) Neural Netw , vol.18 , pp. 781-789
    • Taskaya-Temizel, T.1    Casey, M.C.2
  • 17
    • 79551678241 scopus 로고    scopus 로고
    • Analysis of output trends from Varian 2100C/D and 600C/D accelerators
    • Grattan, M. & A. Hounsell. 2010. Analysis of output trends from Varian 2100C/D and 600C/D accelerators. Phys. Med. Biol. 56: N11.
    • (2010) Phys. Med. Biol. , vol.56 , pp. N11
    • Grattan, M.1    Hounsell, A.2
  • 18
    • 85010866823 scopus 로고    scopus 로고
    • SU-ET-136: assessment of seasonal linear accelerator output variations and associated impacts
    • Bartolac, S. & D. Letourneau. 2015. SU-ET-136: assessment of seasonal linear accelerator output variations and associated impacts. Med. Phys. 42: 3363.
    • (2015) Med. Phys. , vol.42 , pp. 3363
    • Bartolac, S.1    Letourneau, D.2
  • 19
    • 84906075953 scopus 로고    scopus 로고
    • Output trends, characteristics, and measurements of three mega-voltage radiotherapy linear accelerators
    • Hossain, M. 2014. Output trends, characteristics, and measurements of three mega-voltage radiotherapy linear accelerators. J. Appl. Clin. Med. Phys. 15: 4783.
    • (2014) J. Appl. Clin. Med. Phys. , vol.15 , pp. 4783
    • Hossain, M.1
  • 20
    • 84885620968 scopus 로고    scopus 로고
    • Quality control of modern linear accelerator: dose stability long and short-term
    • In, New Orleans
    • Uddin, M.T. 2012. Quality control of modern linear accelerator: dose stability long and short-term. In Proceedings of IPAC2012, New Orleans.
    • (2012) Proceedings of IPAC2012
    • Uddin, M.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.