메뉴 건너뛰기




Volumn 2018, Issue 5, 2018, Pages

A brief introduction to mixed effects modelling and multi-model inference in ecology

Author keywords

AIC; Collinearity; GLMM; Mixed effects models; Model averaging; Model selection; Multi model inference; Overdispersion; Random effects; Type I error

Indexed keywords

ACCURACY; ANALYTICAL ERROR; ARTICLE; ECOLOGY; HYPOTHESIS; INFORMATION SCIENCE; LINEAR MIXED EFFECT MODEL; MULTI MODEL INFERENCE; NONHUMAN; PREDICTOR VARIABLE; RANDOM ERROR; SIMULATION; STATISTICAL ANALYSIS; STATISTICAL MODEL; VARIANCE;

EID: 85047520267     PISSN: None     EISSN: 21678359     Source Type: Journal    
DOI: 10.7717/peerj.4794     Document Type: Article
Times cited : (1341)

References (95)
  • 1
    • 84949955876 scopus 로고    scopus 로고
    • Multilevel analysis quantifies variation in the experimental effect while optimizing power and preventing false positives
    • Aarts E, Dolan CV, Verhage M, Sluis S. 2015. Multilevel analysis quantifies variation in the experimental effect while optimizing power and preventing false positives. BMC Neuroscience 16(1):94 DOI 10.1186/s12868-015-0228-5
    • (2015) BMC Neuroscience , vol.16 , Issue.1 , pp. 94
    • Aarts, E.1    Dolan, C.V.2    Verhage, M.3    Sluis, S.4
  • 3
    • 77955084450 scopus 로고    scopus 로고
    • Uninformative parameters and model selection using Akaike's information criterion
    • Arnold TW. 2010. Uninformative parameters and model selection using Akaike's information criterion. Journal of Wildlife Management 74(6):1175-1178 DOI 10.1111/j.1937-2817.2010.tb01236.x
    • (2010) Journal of Wildlife Management , vol.74 , Issue.6 , pp. 1175-1178
    • Arnold, T.W.1
  • 4
    • 0037202447 scopus 로고    scopus 로고
    • Spatial prediction of species distribution: an interface between ecological theory and statistical modelling
    • Austin MP. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling 157(2-3):101-118 DOI 10.1016/s0304-3800(02)00205-3
    • (2002) Ecological Modelling , vol.157 , Issue.2-3 , pp. 101-118
    • Austin, M.P.1
  • 5
    • 84932193128 scopus 로고    scopus 로고
    • Truth, models, model sets, AIC, and multimodel inference: a Bayesian perspective
    • Barker RJ, Link WA. 2015. Truth, models, model sets, AIC, and multimodel inference: a Bayesian perspective. Journal of Wildlife Management 79(5):730-738 DOI 10.1002/jwmg.890
    • (2015) Journal of Wildlife Management , vol.79 , Issue.5 , pp. 730-738
    • Barker, R.J.1    Link, W.A.2
  • 6
    • 84871868072 scopus 로고    scopus 로고
    • Random effects structure for confirmatory hypothesis testing: keep it maximal
    • Barr DJ, Levy R, Scheepers C, Tily HJ. 2013. Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language 68(3):255-278 DOI 10.1016/j.jml.2012.11.001
    • (2013) Journal of Memory and Language , vol.68 , Issue.3 , pp. 255-278
    • Barr, D.J.1    Levy, R.2    Scheepers, C.3    Tily, H.J.4
  • 7
    • 72249093876 scopus 로고    scopus 로고
    • R package Version 1.15.6
    • Bartoń K. 2016. MuMIn: multi-model inference. R package Version 1.15.6. Available at https://CRAN.R-project.org/package=MuMIn
    • (2016) MuMIn: multi-model inference
  • 8
    • 84942999946 scopus 로고    scopus 로고
    • Bates D, Kliegl R, Vasishth S, Baayen H. 2015a. Parsimonious mixed models. Available at http://arxiv.org/abs/1506.04967
    • (2015) Parsimonious mixed models
  • 12
    • 84974661228 scopus 로고    scopus 로고
    • The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity
    • Brewer MJ, Butler A, Cooksley SL. 2016. The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods in Ecology and Evolution 7(6):679-692 DOI 10.1111/2041-210x.12541
    • (2016) Methods in Ecology and Evolution , vol.7 , Issue.6 , pp. 679-692
    • Brewer, M.J.1    Butler, A.2    Cooksley, S.L.3
  • 14
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference: understanding AIC and BIC in model selection
    • Burnham KP, Anderson DR. 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33(2):261-304 DOI 10.1177/0049124104268644
    • (2004) Sociological Methods & Research , vol.33 , Issue.2 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 15
    • 78650752639 scopus 로고    scopus 로고
    • AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons
    • Burnham KP, Anderson DR, Huyvaert KP. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65(1):23-35 DOI 10.1007/s00265-010-1029-6
    • (2011) Behavioral Ecology and Sociobiology , vol.65 , Issue.1 , pp. 23-35
    • Burnham, K.P.1    Anderson, D.R.2    Huyvaert, K.P.3
  • 16
    • 84932194664 scopus 로고    scopus 로고
    • Model averaging and muddled multimodel inferences
    • Cade BS. 2015. Model averaging and muddled multimodel inferences. Ecology 96(9):2370-2382 DOI 10.1890/14-1639.1
    • (2015) Ecology , vol.96 , Issue.9 , pp. 2370-2382
    • Cade, B.S.1
  • 17
    • 1942422934 scopus 로고
    • Model uncertainty, data mining and statistical inference (with discussion). Journal of the Royal Statistical Society
    • Chatfield C. 1995. Model uncertainty, data mining and statistical inference (with discussion). Journal of the Royal Statistical Society. Series A (Statistics in Society) 158(3):419-466 DOI 10.2307/2983440
    • (1995) Series A (Statistics in Society) , vol.158 , Issue.3 , pp. 419-466
    • Chatfield, C.1
  • 19
    • 34548524804 scopus 로고    scopus 로고
    • Second Edition. Chichester: Wiley
    • Crawley M. 2013. The R Book. Second Edition. Chichester: Wiley
    • (2013) The R Book
    • Crawley, M.1
  • 20
    • 78650718789 scopus 로고    scopus 로고
    • Developing multiple hypotheses in behavioural ecology
    • Dochtermann NA, Jenkins SH. 2011. Developing multiple hypotheses in behavioural ecology. Behavioral Ecology and Sociobiology 65(1):37-45 DOI 10.1007/s00265-010-1039-4
    • (2011) Behavioral Ecology and Sociobiology , vol.65 , Issue.1 , pp. 37-45
    • Dochtermann, N.A.1    Jenkins, S.H.2
  • 21
  • 23
    • 2542636541 scopus 로고    scopus 로고
    • Bayesian inference in ecology
    • Ellison AM. 2004. Bayesian inference in ecology. Ecology Letters 7(6):509-520 DOI 10.1111/j.1461-0248.2004.00603.x
    • (2004) Ecology Letters , vol.7 , Issue.6 , pp. 509-520
    • Ellison, A.M.1
  • 24
    • 0035017842 scopus 로고    scopus 로고
    • Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks
    • Elston DA, Moss R, Boulinier T, Arrowsmith C, Lambin X. 2001. Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks. Parasitology 122(5):563-569 DOI 10.1017/s0031182001007740
    • (2001) Parasitology , vol.122 , Issue.5 , pp. 563-569
    • Elston, D.A.1    Moss, R.2    Boulinier, T.3    Arrowsmith, C.4    Lambin, X.5
  • 25
    • 84932197080 scopus 로고    scopus 로고
    • MMI: multimodel inference or models with management implications?
    • Fieberg J, Johnson DH. 2015. MMI: multimodel inference or models with management implications? Journal of Wildlife Management 79(5):708-718 DOI 10.1002/jwmg.894
    • (2015) Journal of Wildlife Management , vol.79 , Issue.5 , pp. 708-718
    • Fieberg, J.1    Johnson, D.H.2
  • 26
    • 85027938876 scopus 로고    scopus 로고
    • Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse
    • Forstmeier W, Schielzeth H. 2011. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse. Behavioral Ecology and Sociobiology 65(1):47-55 DOI 10.1007/s00265-010-1038-5
    • (2011) Behavioral Ecology and Sociobiology , vol.65 , Issue.1 , pp. 47-55
    • Forstmeier, W.1    Schielzeth, H.2
  • 27
    • 78650726296 scopus 로고    scopus 로고
    • Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error
    • Freckleton RP. 2011. Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behavioral Ecology and Sociobiology 65(1):91-101 DOI 10.1007/s00265-010-1045-6
    • (2011) Behavioral Ecology and Sociobiology , vol.65 , Issue.1 , pp. 91-101
    • Freckleton, R.P.1
  • 28
    • 84931271515 scopus 로고    scopus 로고
    • Ecologists overestimate the importance of predictor variables in model averaging: a plea for cautious interpretations
    • Galipaud M, Gillingham MAF, David M, Dechaume-Moncharmont FX. 2014. Ecologists overestimate the importance of predictor variables in model averaging: a plea for cautious interpretations. Methods in Ecology and Evolution 5(10):983-991 DOI 10.1111/2041-210x.12251
    • (2014) Methods in Ecology and Evolution , vol.5 , Issue.10 , pp. 983-991
    • Galipaud, M.1    Gillingham, M.A.F.2    David, M.3    Dechaume-Moncharmont, F.X.4
  • 29
    • 85037054354 scopus 로고    scopus 로고
    • A farewell to the sum of Akaike weights: the benefits of alternative metrics for variable importance estimations in model selection
    • Galipaud M, Gillingham MAF, Dechaume-Moncharmont FX. 2017. A farewell to the sum of Akaike weights: the benefits of alternative metrics for variable importance estimations in model selection. Methods in Ecology and Evolution 8(12):1668-1678 DOI 10.1111/2041-210X.12835
    • (2017) Methods in Ecology and Evolution , vol.8 , Issue.12 , pp. 1668-1678
    • Galipaud, M.1    Gillingham, M.A.F.2    Dechaume-Moncharmont, F.X.3
  • 30
    • 47249142538 scopus 로고    scopus 로고
    • Scaling regression inputs by dividing by two standard deviations
    • Gelman A. 2008. Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine 27(15):2865-2873 DOI 10.1002/sim.3107
    • (2008) Statistics in Medicine , vol.27 , Issue.15 , pp. 2865-2873
    • Gelman, A.1
  • 32
    • 33744531866 scopus 로고    scopus 로고
    • Bayesian measures of explained variance and pooling in multilevel (hierarchical) models
    • Gelman A, Pardoe I. 2006. Bayesian measures of explained variance and pooling in multilevel (hierarchical) models. Technometrics 48(2):241-251 DOI 10.1198/004017005000000517
    • (2006) Technometrics , vol.48 , Issue.2 , pp. 241-251
    • Gelman, A.1    Pardoe, I.2
  • 33
    • 84948181054 scopus 로고    scopus 로고
    • Quantifying variable importance in a multimodel inference framework
    • Giam X, Olden JD. 2016. Quantifying variable importance in a multimodel inference framework. Methods in Ecology and Evolution 7(4):388-397 DOI 10.1111/2041-210x.12492
    • (2016) Methods in Ecology and Evolution , vol.7 , Issue.4 , pp. 388-397
    • Giam, X.1    Olden, J.D.2
  • 34
    • 1342330862 scopus 로고    scopus 로고
    • Confronting multicollinearity in multiple linear regression
    • Graham ME. 2003. Confronting multicollinearity in multiple linear regression. Ecology 84(11):2809-2815 DOI 10.1890/02-3114
    • (2003) Ecology , vol.84 , Issue.11 , pp. 2809-2815
    • Graham, M.E.1
  • 35
    • 79952700240 scopus 로고    scopus 로고
    • Multimodel inference in ecology and evolution: challenges and solutions
    • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG. 2011. Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24(4):699-711 DOI 10.1111/j.1420-9101.2010.02210.x
    • (2011) Journal of Evolutionary Biology , vol.24 , Issue.4 , pp. 699-711
    • Grueber, C.E.1    Nakagawa, S.2    Laws, R.J.3    Jamieson, I.G.4
  • 36
    • 84910668928 scopus 로고    scopus 로고
    • Using observation-level random effects to model overdispersion in count data in ecology and evolution
    • Harrison XA. 2014. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2:e616 DOI 10.7717/peerj.616
    • (2014) PeerJ , vol.2
    • Harrison, X.A.1
  • 37
    • 84937886635 scopus 로고    scopus 로고
    • A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution
    • Harrison XA. 2015. A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ 3:e1114 DOI 10.7717/peerj.1114
    • (2015) PeerJ , vol.3
    • Harrison, X.A.1
  • 39
    • 78650788048 scopus 로고    scopus 로고
    • Using information theory as a substitute for stepwise regression in ecology and behaviour
    • Hegyi G, Garamszegi LZ. 2011. Using information theory as a substitute for stepwise regression in ecology and behaviour. Behavioral Ecology and Sociobiology 65(1):69-76 DOI 10.1007/s00265-010-1036-7
    • (2011) Behavioral Ecology and Sociobiology , vol.65 , Issue.1 , pp. 69-76
    • Hegyi, G.1    Garamszegi, L.Z.2
  • 41
    • 85107644026 scopus 로고    scopus 로고
    • Avoiding the misuse of BLUP in behavioral ecology
    • Houslay T, Wilson A. 2017. Avoiding the misuse of BLUP in behavioral ecology. Behavioral Ecology 28(4):948-952 DOI 10.1093/beheco/arx023
    • (2017) Behavioral Ecology , vol.28 , Issue.4 , pp. 948-952
    • Houslay, T.1    Wilson, A.2
  • 42
    • 84937073944 scopus 로고    scopus 로고
    • For testing the significance of regression coefficients, go ahead and log-transform count data
    • Ives AR. 2015. For testing the significance of regression coefficients, go ahead and log-transform count data. Methods in Ecology and Evolution 6(7):828-835 DOI 10.1111/2041-210x.12386
    • (2015) Methods in Ecology and Evolution , vol.6 , Issue.7 , pp. 828-835
    • Ives, A.R.1
  • 43
    • 0025526046 scopus 로고
    • Multivariate analysis in ecology and systematics: panacea or Pandora box
    • James FC, McCullugh CF. 1990. Multivariate analysis in ecology and systematics: panacea or Pandora box. Annual Review of Ecology and Systematics 21(1):129-166 DOI 10.1146/annurev.es.21.110190.001021
    • (1990) Annual Review of Ecology and Systematics , vol.21 , Issue.1 , pp. 129-166
    • James, F.C.1    McCullugh, C.F.2
  • 44
    • 85027343577 scopus 로고    scopus 로고
    • Extension of Nakagawa & Schielzeth's R2 GLMM to random slopes models
    • Johnson PCD. 2014. Extension of Nakagawa & Schielzeth's R2 GLMM to random slopes models. Methods in Ecology and Evolution 5(9):944-946 DOI 10.1111/2041-210x.12225
    • (2014) Methods in Ecology and Evolution , vol.5 , Issue.9 , pp. 944-946
    • Johnson, P.C.D.1
  • 45
    • 1242296549 scopus 로고    scopus 로고
    • Model selection in ecology and evolution
    • Johnson JB, Omland KS. 2004. Model selection in ecology and evolution. Trends in Ecology & Evolution 19(2):101-108 DOI 10.1016/j.tree.2003.10.013
    • (2004) Trends in Ecology & Evolution , vol.19 , Issue.2 , pp. 101-108
    • Johnson, J.B.1    Omland, K.S.2
  • 48
    • 84927125339 scopus 로고    scopus 로고
    • Test for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package Version 2
    • Kuznetsova A, BrockhoffPB, Christensen RHB. 2014. Package 'lmerTest'. Test for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package Version 2. Available at https://github.com/runehaubo/lmerTestR
    • (2014) Package 'lmerTest'
  • 49
    • 84952838213 scopus 로고    scopus 로고
    • piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics
    • Lefcheck JS. 2015. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution 7(5):573-579 DOI 10.1111/2041-210x.12512
    • (2015) Methods in Ecology and Evolution , vol.7 , Issue.5 , pp. 573-579
    • Lefcheck, J.S.1
  • 50
    • 84932198517 scopus 로고    scopus 로고
    • History of multimodel inference via model selection in wildlife science
    • Lindberg MS, Schmidt JH, Walker J. 2015. History of multimodel inference via model selection in wildlife science. Journal of Wildlife Management 79(5):704-707 DOI 10.1002/jwmg.892
    • (2015) Journal of Wildlife Management , vol.79 , Issue.5 , pp. 704-707
    • Lindberg, M.S.1    Schmidt, J.H.2    Walker, J.3
  • 54
    • 78650726755 scopus 로고    scopus 로고
    • Issues in information theory-based statistical inference-a commentary from a frequentist's perspective
    • Mundry R. 2011. Issues in information theory-based statistical inference-a commentary from a frequentist's perspective. Behavioral Ecology and Sociobiology 65(1):57-68 DOI 10.1007/s00265-010-1040-y
    • (2011) Behavioral Ecology and Sociobiology , vol.65 , Issue.1 , pp. 57-68
    • Mundry, R.1
  • 55
    • 34247122622 scopus 로고    scopus 로고
    • Simplicity and complexity in ecological data analysis
    • Murtaugh PA. 2007. Simplicity and complexity in ecological data analysis. Ecology 88(1):56-62 DOI 10.1890/0012-9658(2007)88[56:sacied]2.0.co;2
    • (2007) Ecology , vol.88 , Issue.1 , pp. 56-62
    • Murtaugh, P.A.1
  • 56
    • 70349102828 scopus 로고    scopus 로고
    • Performance of several variable-selection methods applied to real ecological data
    • Murtaugh PA. 2009. Performance of several variable-selection methods applied to real ecological data. Ecology Letters 12(10):1061-1068 DOI 10.1111/j.1461-0248.2009.01361.x
    • (2009) Ecology Letters , vol.12 , Issue.10 , pp. 1061-1068
    • Murtaugh, P.A.1
  • 57
    • 84901595287 scopus 로고    scopus 로고
    • In defense of P values
    • Murtaugh PA. 2014. In defense of P values. Ecology 95(3):611-617 DOI 10.1890/13-0590.1
    • (2014) Ecology , vol.95 , Issue.3 , pp. 611-617
    • Murtaugh, P.A.1
  • 58
    • 77956887506 scopus 로고
    • A note on a general definition of the coefficient of determination
    • Nagelkerke NJ. 1991. A note on a general definition of the coefficient of determination. Biometrika 78(3):691-692 DOI 10.1093/biomet/78.3.691
    • (1991) Biometrika , vol.78 , Issue.3 , pp. 691-692
    • Nagelkerke, N.J.1
  • 59
    • 84995465975 scopus 로고    scopus 로고
    • Missing data: mechanisms, methods and messages
    • Fox GA, Negrete-Yankelevich S, Sosa VJ, edsOxford: Oxford University Press
    • Nakagawa S. 2015. Missing data: mechanisms, methods and messages. In: Fox GA, Negrete-Yankelevich S, Sosa VJ, eds. Ecological Statistics: Contemporary Theory and Application. Oxford: Oxford University Press, 81-105
    • (2015) Ecological Statistics: Contemporary Theory and Application , pp. 81-105
    • Nakagawa, S.1
  • 60
    • 11844280390 scopus 로고    scopus 로고
    • The case against retrospective statistical power analyses with an introduction to power analysis
    • Nakagawa S, Foster T. 2004. The case against retrospective statistical power analyses with an introduction to power analysis. Acta Ethologica 7(2):103-108 DOI 10.1007/s10211-004-0095-z
    • (2004) Acta Ethologica , vol.7 , Issue.2 , pp. 103-108
    • Nakagawa, S.1    Foster, T.2
  • 61
    • 53649107862 scopus 로고    scopus 로고
    • Missing inaction: the dangers of ignoring missing data
    • Nakagawa S, Freckleton RP. 2008. Missing inaction: the dangers of ignoring missing data. Trends in Ecology & Evolution 23(11):592-596 DOI 10.1016/j.tree.2008.06.014
    • (2008) Trends in Ecology & Evolution , vol.23 , Issue.11 , pp. 592-596
    • Nakagawa, S.1    Freckleton, R.P.2
  • 62
    • 78650719881 scopus 로고    scopus 로고
    • Model averaging, missing data and multiple imputation: a case study for behavioural ecology
    • Nakagawa S, Freckleton RP. 2011. Model averaging, missing data and multiple imputation: a case study for behavioural ecology. Behavioral Ecology and Sociobiology 65(1):103-116 DOI 10.1007/s00265-010-1044-7
    • (2011) Behavioral Ecology and Sociobiology , vol.65 , Issue.1 , pp. 103-116
    • Nakagawa, S.1    Freckleton, R.P.2
  • 63
    • 85031118177 scopus 로고    scopus 로고
    • The coefficient of determination R2 and intraclass correlation coefficient from generalized linear mixed-effects models revisited and expanded
    • Nakagawa S, Johnson PCD, Schielzeth H. 2017. The coefficient of determination R2 and intraclass correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface 14(134):20170213 DOI 10.1098/rsif.2017.0213
    • (2017) Journal of the Royal Society Interface , vol.14 , Issue.134
    • Nakagawa, S.1    Johnson, P.C.D.2    Schielzeth, H.3
  • 64
    • 77954751665 scopus 로고    scopus 로고
    • Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists
    • Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biological Reviews 85(4):935-956 DOI 10.1111/j.1469-185X.2010.00141.x
    • (2010) Biological Reviews , vol.85 , Issue.4 , pp. 935-956
    • Nakagawa, S.1    Schielzeth, H.2
  • 65
    • 84873554456 scopus 로고    scopus 로고
    • A general and simple method for obtaining R2 from generalized linear mixed-effects models
    • Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4(2):133-142 DOI 10.1111/j.2041-210x.2012.00261.x
    • (2013) Methods in Ecology and Evolution , vol.4 , Issue.2 , pp. 133-142
    • Nakagawa, S.1    Schielzeth, H.2
  • 66
    • 0034203345 scopus 로고    scopus 로고
    • Null hypothesis significance testing: a review of an old and continuing controversy
    • Nickerson RS. 2000. Null hypothesis significance testing: a review of an old and continuing controversy. Psychological Methods 5(2):241-301 DOI 10.1037/1082-989x.5.2.241
    • (2000) Psychological Methods , vol.5 , Issue.2 , pp. 241-301
    • Nickerson, R.S.1
  • 67
    • 85056789522 scopus 로고    scopus 로고
    • Planned missing data design: stronger inferences increased research efficiency and improved animal welfare in ecology and evolution
    • Noble DWA, Nakagawa S. 2017. Planned missing data design: stronger inferences increased research efficiency and improved animal welfare in ecology and evolution. bioRxiv 247064 DOI 10.1101/247064
    • (2017) bioRxiv
    • Noble, D.W.A.1    Nakagawa, S.2
  • 68
    • 78650219529 scopus 로고    scopus 로고
    • Do not log-transform count data
    • O'Hara RB, Kotze DJ. 2010. Do not log-transform count data. Methods in Ecology and Evolution 1(2):118-122 DOI 10.1111/j.2041-210x.2010.00021.x
    • (2010) Methods in Ecology and Evolution , vol.1 , Issue.2 , pp. 118-122
    • O'Hara, R.B.1    Kotze, D.J.2
  • 69
    • 71049148330 scopus 로고    scopus 로고
    • New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method
    • Peig J, Green AJ. 2009. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118(12):1883-1891 DOI 10.1111/j.1600-0706.2009.17643.x
    • (2009) Oikos , vol.118 , Issue.12 , pp. 1883-1891
    • Peig, J.1    Green, A.J.2
  • 72
    • 5344244656 scopus 로고    scopus 로고
    • Vienna: R Foundation for Statistical Computing
    • R Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at https://www. R-project.org/
    • (2016) R: A Language and Environment for Statistical Computing
  • 73
    • 26044431727 scopus 로고    scopus 로고
    • Testing ecological theory using the information-theoretic approach: examples and cautionary results
    • Richards SA. 2005. Testing ecological theory using the information-theoretic approach: examples and cautionary results. Ecology 86(10):2805-2814 DOI 10.1890/05-0074
    • (2005) Ecology , vol.86 , Issue.10 , pp. 2805-2814
    • Richards, S.A.1
  • 74
    • 38349148964 scopus 로고    scopus 로고
    • Dealing with overdispersed count data in applied ecology
    • Richards SA. 2008. Dealing with overdispersed count data in applied ecology. Journal of Applied Ecology 45(1):218-227 DOI 10.1111/j.1365-2664.2007.01377.x
    • (2008) Journal of Applied Ecology , vol.45 , Issue.1 , pp. 218-227
    • Richards, S.A.1
  • 75
    • 85027936490 scopus 로고    scopus 로고
    • Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework
    • Richards SA, Whittingham MJ, Stephens PA. 2011. Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behavioral Ecology and Sociobiology 65(1):77-89 DOI 10.1007/s00265-010-1035-8
    • (2011) Behavioral Ecology and Sociobiology , vol.65 , Issue.1 , pp. 77-89
    • Richards, S.A.1    Whittingham, M.J.2    Stephens, P.A.3
  • 76
    • 84905236343 scopus 로고    scopus 로고
    • Testing environmental and genetic effects in the presence of spatial autocorrelation
    • Rousset F, Ferdy JB. 2014. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37(8):781-790 DOI 10.1111/ecog.00566
    • (2014) Ecography , vol.37 , Issue.8 , pp. 781-790
    • Rousset, F.1    Ferdy, J.B.2
  • 77
    • 0030274304 scopus 로고    scopus 로고
    • Testing ecological models: the meaning of validation
    • Rykiel EJ. 1996. Testing ecological models: the meaning of validation. Ecological Modelling 90(3):229-244 DOI 10.1016/0304-3800(95)00152-2
    • (1996) Ecological Modelling , vol.90 , Issue.3 , pp. 229-244
    • Rykiel, E.J.1
  • 79
    • 77956069051 scopus 로고    scopus 로고
    • Simple means to improve the interpretability of regression coefficients
    • Schielzeth H. 2010. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1(2):103-113 DOI 10.1111/j.2041-210x.2010.00012.x
    • (2010) Methods in Ecology and Evolution , vol.1 , Issue.2 , pp. 103-113
    • Schielzeth, H.1
  • 80
    • 64949134162 scopus 로고    scopus 로고
    • Conclusions beyond support: overconfident estimates in mixed models
    • Schielzeth H, Forstmeier W. 2009. Conclusions beyond support: overconfident estimates in mixed models. Behavioral Ecology 20(2):416-420 DOI 10.1093/beheco/arn145
    • (2009) Behavioral Ecology , vol.20 , Issue.2 , pp. 416-420
    • Schielzeth, H.1    Forstmeier, W.2
  • 81
    • 84872963304 scopus 로고    scopus 로고
    • Nested by design: model fitting and interpretation in a mixed model era
    • Schielzeth H, Nakagawa S. 2013. Nested by design: model fitting and interpretation in a mixed model era. Methods in Ecology Evolution 4(1):14-24 DOI 10.1111/j.2041-210x.2012.00251.x
    • (2013) Methods in Ecology Evolution , vol.4 , Issue.1 , pp. 14-24
    • Schielzeth, H.1    Nakagawa, S.2
  • 84
    • 78650731004 scopus 로고    scopus 로고
    • A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion
    • Symonds MRE, Moussalli A. 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behavioral Ecology and Sociobiology 65(1):13-21 DOI 10.1007/s00265-010-1037-6
    • (2011) Behavioral Ecology and Sociobiology , vol.65 , Issue.1 , pp. 13-21
    • Symonds, M.R.E.1    Moussalli, A.2
  • 85
    • 21644476631 scopus 로고    scopus 로고
    • Conditional Akaike information for mixed-effects models
    • Vaida F, Blanchard S. 2005. Conditional Akaike information for mixed-effects models. Biometrika 92(2):351-370 DOI 10.1093/biomet/92.2.351
    • (2005) Biometrika , vol.92 , Issue.2 , pp. 351-370
    • Vaida, F.1    Blanchard, S.2
  • 86
    • 59849095705 scopus 로고    scopus 로고
    • A simple method for distinguishing within-versus between-subject effects using mixed models
    • van de Pol M, Wright J. 2009. A simple method for distinguishing within-versus between-subject effects using mixed models. Animal Behaviour 77(3):753-758 DOI 10.1016/j.anbehav.2008.11.006
    • (2009) Animal Behaviour , vol.77 , Issue.3 , pp. 753-758
    • van de Pol, M.1    Wright, J.2
  • 88
    • 79955546353 scopus 로고    scopus 로고
    • The arcsine is asinine: the analysis of proportions in ecology
    • Warton D, Hui F. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92(1):3-10 DOI 10.1890/10-0340.1
    • (2011) Ecology , vol.92 , Issue.1 , pp. 3-10
    • Warton, D.1    Hui, F.2
  • 89
    • 84962920743 scopus 로고    scopus 로고
    • Three points to consider when choosing a LM or GLM test for count data
    • Warton DI, Lyons M, Stoklosa J, Ives AR. 2016. Three points to consider when choosing a LM or GLM test for count data. Methods in Ecology and Evolution 7(8):882-890 DOI 10.1111/2041-210x.12552
    • (2016) Methods in Ecology and Evolution , vol.7 , Issue.8 , pp. 882-890
    • Warton, D.I.1    Lyons, M.2    Stoklosa, J.3    Ives, A.R.4
  • 93
    • 84974665920 scopus 로고    scopus 로고
    • A protocol for conducting and presenting results of regression-type analyses
    • Zuur AF, Ieno EN. 2016. A protocol for conducting and presenting results of regression-type analyses. Methods in Ecology and Evolution 7(6):636-645 DOI 10.1111/2041-210x.12577
    • (2016) Methods in Ecology and Evolution , vol.7 , Issue.6 , pp. 636-645
    • Zuur, A.F.1    Ieno, E.N.2
  • 94
    • 77957104527 scopus 로고    scopus 로고
    • A protocol for data exploration to avoid common statistical problems
    • Zuur AF, Ieno EN, Elphick CS. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1(1):3-14 DOI 10.1111/j.2041-210x.2009.00001.x
    • (2010) Methods in Ecology and Evolution , vol.1 , Issue.1 , pp. 3-14
    • Zuur, A.F.1    Ieno, E.N.2    Elphick, C.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.