메뉴 건너뛰기




Volumn 6, Issue 7, 2015, Pages 828-835

For testing the significance of regression coefficients, go ahead and log-transform count data

Author keywords

Generalized linear mixed models; Generalized linear models; Least squares regression; Linear models; Transformation; Type i errors

Indexed keywords


EID: 84937073944     PISSN: None     EISSN: 2041210X     Source Type: Journal    
DOI: 10.1111/2041-210X.12386     Document Type: Article
Times cited : (173)

References (25)
  • 1
    • 84937074396 scopus 로고    scopus 로고
    • Lme4: Linear Mixed-Effects Models Using Eigen and S4.[version 1.1-7].
    • Bates, D., Maechler, M., Bolker, B. & Walker, S. (2014) Lme4: Linear Mixed-Effects Models Using Eigen and S4. http://CRAN.R-project.org/package=lme4 [version 1.1-7].
    • (2014)
    • Bates, D.1    Maechler, M.2    Bolker, B.3    Walker, S.4
  • 4
    • 0033240797 scopus 로고    scopus 로고
    • Analyzing over-dispersed count data in two-way cross-classification problems using generalized linear models
    • Campbell, N.L., Young, L.J. & Capuano, G.A. (1999) Analyzing over-dispersed count data in two-way cross-classification problems using generalized linear models. Journal of Statistical Computation and Simulation, 63, 263-281.
    • (1999) Journal of Statistical Computation and Simulation , vol.63 , pp. 263-281
    • Campbell, N.L.1    Young, L.J.2    Capuano, G.A.3
  • 5
    • 18844416849 scopus 로고
    • Wald, likelihood ratio, and Lagrange multiplier tests in econometrics
    • (eds Z. Griliches & M. Intriligator) -. Elsevier, Amsterdam.
    • Engle, R.F. (1984) Wald, likelihood ratio, and Lagrange multiplier tests in econometrics. Handbook of Econometrics. Vol. 2 (eds Z. Griliches & M. Intriligator ), pp. 775-826. Elsevier, Amsterdam.
    • (1984) Handbook of Econometrics , vol.2 , pp. 775-826
    • Engle, R.F.1
  • 7
    • 77749249761 scopus 로고    scopus 로고
    • MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package
    • Hadfield, J.D. (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software, 33, 1-22.
    • (2010) Journal of Statistical Software , vol.33 , pp. 1-22
    • Hadfield, J.D.1
  • 9
    • 80051532520 scopus 로고    scopus 로고
    • Generalized linear mixed models for phylogenetic analyses of community structure
    • Ives, A.R. & Helmus, M.R. (2011) Generalized linear mixed models for phylogenetic analyses of community structure. Ecological Monographs, 81, 511-525.
    • (2011) Ecological Monographs , vol.81 , pp. 511-525
    • Ives, A.R.1    Helmus, M.R.2
  • 11
    • 79960459057 scopus 로고    scopus 로고
    • Using the negative binomial distribution to model overdispersion in ecological count data
    • Linden, A. & Mantyniemi, S. (2011) Using the negative binomial distribution to model overdispersion in ecological count data. Ecology, 92, 1414-1421.
    • (2011) Ecology , vol.92 , pp. 1414-1421
    • Linden, A.1    Mantyniemi, S.2
  • 14
    • 34247122622 scopus 로고    scopus 로고
    • Simplicity and complexity in ecological data analysis
    • Murtaugh, P.A. (2007) Simplicity and complexity in ecological data analysis. Ecology, 88, 56-62.
    • (2007) Ecology , vol.88 , pp. 56-62
    • Murtaugh, P.A.1
  • 15
    • 16244364825 scopus 로고    scopus 로고
    • Species richness estimators: how many species can dance on the head of a pin?
    • O'Hara, R.B. (2005) Species richness estimators: how many species can dance on the head of a pin? Journal of Animal Ecology, 74, 375-386.
    • (2005) Journal of Animal Ecology , vol.74 , pp. 375-386
    • O'Hara, R.B.1
  • 17
    • 84862683573 scopus 로고    scopus 로고
    • A generalized model for overdispersed count data
    • Okamura, H., Punt, A.E. & Amano, T. (2012) A generalized model for overdispersed count data. Population Ecology, 54, 467-474.
    • (2012) Population Ecology , vol.54 , pp. 467-474
    • Okamura, H.1    Punt, A.E.2    Amano, T.3
  • 19
    • 84869217600 scopus 로고    scopus 로고
    • An accessible method for implementing hierarchical models with spatio-temporal abundance data
    • Ross, B.E., Hooten, M.B. & Koons, D.N. (2012) An accessible method for implementing hierarchical models with spatio-temporal abundance data. PLoS ONE, 7, e49395. doi:10.1371/journal.pone.0049395.
    • (2012) PLoS ONE , vol.7 , pp. e49395
    • Ross, B.E.1    Hooten, M.B.2    Koons, D.N.3
  • 20
    • 0013447060 scopus 로고
    • 2nd edn. W. M. Freeman & Company, New York.
    • Sokal, R.R. & Rohlf, F.J. (1981) Biometry, 2nd edn. W. M. Freeman & Company, New York.
    • (1981) Biometry
    • Sokal, R.R.1    Rohlf, F.J.2
  • 21
    • 84901048274 scopus 로고    scopus 로고
    • Applied statistics in ecology: common pitfalls and simple solutions
    • Steel, E.A., Kennedy, M.C., Cunningham, P.G. & Stanovick, J.S. (2013) Applied statistics in ecology: common pitfalls and simple solutions. Ecosphere, 4, 115. doi: 10.1890/ES13-00160.1.
    • (2013) Ecosphere , vol.4 , pp. 115
    • Steel, E.A.1    Kennedy, M.C.2    Cunningham, P.G.3    Stanovick, J.S.4
  • 23
    • 38449113722 scopus 로고    scopus 로고
    • Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data?
    • Ver Hoef, J.M. & Boveng, P.L. (2007) Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology, 88, 2766-2772.
    • (2007) Ecology , vol.88 , pp. 2766-2772
    • Ver Hoef, J.M.1    Boveng, P.L.2
  • 24
    • 79955546353 scopus 로고    scopus 로고
    • The arcsine is asinine: the analysis of proportions in ecology
    • Warton, D.I. & Hui, F.K.C. (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology, 92, 3-10.
    • (2011) Ecology , vol.92 , pp. 3-10
    • Warton, D.I.1    Hui, F.K.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.