메뉴 건너뛰기




Volumn 8, Issue 12, 2017, Pages 1668-1678

A farewell to the sum of Akaike weights: The benefits of alternative metrics for variable importance estimations in model selection

Author keywords

Akaike information criterion; effect size; evidence ratio; model averaging; multi model inferences; standardised parameter estimates; variable criticality; variable ranking

Indexed keywords


EID: 85037054354     PISSN: None     EISSN: 2041210X     Source Type: Journal    
DOI: 10.1111/2041-210X.12835     Document Type: Article
Times cited : (77)

References (35)
  • 1
    • 0000501656 scopus 로고
    • Information theory as an extension of the maximum likelihood principle
    • In, B. N. Petrov, &, F. Csaki, (Eds.),, Budapest, Akaemiai Kiado
    • Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akaemiai Kiado.
    • (1973) Second international symposium on information theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 77955084450 scopus 로고    scopus 로고
    • Uninformative parameters and model selection using Akaike's Information Criterion
    • Arnold, T. W. (2010). Uninformative parameters and model selection using Akaike's Information Criterion. Journal of Wildlife Management, 74, 1175–1178.
    • (2010) Journal of Wildlife Management , vol.74 , pp. 1175-1178
    • Arnold, T.W.1
  • 5
    • 12044256695 scopus 로고
    • Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression
    • Budescu, D. V. (1993). Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychological Bulletin, 114, 542–551.
    • (1993) Psychological Bulletin , vol.114 , pp. 542-551
    • Budescu, D.V.1
  • 9
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference: Understanding AIC and BIC in model selection
    • Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods and Research, 33, 261–304.
    • (2004) Sociological Methods and Research , vol.33 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 10
    • 78650752639 scopus 로고    scopus 로고
    • AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons
    • Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65, 23–35.
    • (2011) Behavioral Ecology and Sociobiology , vol.65 , pp. 23-35
    • Burnham, K.P.1    Anderson, D.R.2    Huyvaert, K.P.3
  • 11
    • 84932194664 scopus 로고    scopus 로고
    • Model averaging and muddled multimodel inferences
    • Cade, B. S. (2015). Model averaging and muddled multimodel inferences. Ecology, 96, 2370–2382.
    • (2015) Ecology , vol.96 , pp. 2370-2382
    • Cade, B.S.1
  • 13
    • 84931271515 scopus 로고    scopus 로고
    • Ecologists overestimate the importance of predictor variables in model averaging: A plea for cautious interpretations
    • Galipaud, M., Gillingham, M. A. F., David, M., & Dechaume-Moncharmont, F. X. (2014). Ecologists overestimate the importance of predictor variables in model averaging: A plea for cautious interpretations. Methods in Ecology and Evolution, 5, 983–991.
    • (2014) Methods in Ecology and Evolution , vol.5 , pp. 983-991
    • Galipaud, M.1    Gillingham, M.A.F.2    David, M.3    Dechaume-Moncharmont, F.X.4
  • 15
    • 84948181054 scopus 로고    scopus 로고
    • Quantifying variable importance in a multimodel inference framework
    • Giam, X., & Olden, J. D. (2016). Quantifying variable importance in a multimodel inference framework. Methods in Ecology and Evolution, 7, 388–397.
    • (2016) Methods in Ecology and Evolution , vol.7 , pp. 388-397
    • Giam, X.1    Olden, J.D.2
  • 17
    • 0040558027 scopus 로고    scopus 로고
    • A heuristic method for estimating the relative weight of predictor variables in multiple regression
    • Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate Behavioral Research, 35, 1–19.
    • (2000) Multivariate Behavioral Research , vol.35 , pp. 1-19
    • Johnson, J.W.1
  • 18
    • 3042640145 scopus 로고    scopus 로고
    • History and use of relative importance indices in organizational research
    • Johnson, J. W., & LeBreton, J. M. (2004). History and use of relative importance indices in organizational research. Organizational Research Methods, 7, 238–257.
    • (2004) Organizational Research Methods , vol.7 , pp. 238-257
    • Johnson, J.W.1    LeBreton, J.M.2
  • 19
    • 33749043049 scopus 로고    scopus 로고
    • Replicating empirical research in behavioral ecology: How and why it should be done but rarely ever is
    • Kelly, C. D. (2006). Replicating empirical research in behavioral ecology: How and why it should be done but rarely ever is. The Quarterly Review of Biology, 81, 221–236.
    • (2006) The Quarterly Review of Biology , vol.81 , pp. 221-236
    • Kelly, C.D.1
  • 22
    • 0034126611 scopus 로고    scopus 로고
    • Regression and model-building in conservation biology, biogeography and ecology: The distinction between – And reconciliation of – predictive and explanatory models
    • Mac Nally, R. (2000). Regression and model-building in conservation biology, biogeography and ecology: The distinction between – And reconciliation of – predictive and explanatory models. Biodiversity and Conservation, 9, 655–671.
    • (2000) Biodiversity and Conservation , vol.9 , pp. 655-671
    • Mac Nally, R.1
  • 23
    • 63849306338 scopus 로고    scopus 로고
    • Methods to quantify variable importance: Implications for the analysis of noisy ecological data
    • Murray, K., & Conner, M. M. (2009). Methods to quantify variable importance: Implications for the analysis of noisy ecological data. Ecology, 90, 348–355.
    • (2009) Ecology , vol.90 , pp. 348-355
    • Murray, K.1    Conner, M.M.2
  • 24
    • 34547900079 scopus 로고    scopus 로고
    • Effect size, confidence interval and statistical significance: A practical guide for biologists
    • Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews, 82, 591–605.
    • (2007) Biological Reviews , vol.82 , pp. 591-605
    • Nakagawa, S.1    Cuthill, I.C.2
  • 25
    • 84946498815 scopus 로고    scopus 로고
    • Replicating research in ecology and evolution: Feasibility, incentives, and the cost-benefit conundrum
    • Nakagawa, S., & Parker, T. H. (2015). Replicating research in ecology and evolution: Feasibility, incentives, and the cost-benefit conundrum. BMC Biology, 13, 88+.
    • (2015) BMC Biology , vol.13 , pp. 88
    • Nakagawa, S.1    Parker, T.H.2
  • 27
    • 0001201909 scopus 로고
    • Bayesian model selection in social research
    • Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163.
    • (1995) Sociological Methodology , vol.25 , pp. 111-163
    • Raftery, A.E.1
  • 28
    • 26044431727 scopus 로고    scopus 로고
    • Testing ecological theory using the information theoretic approach: Examples and cautionary results
    • Richards, S. A. (2005). Testing ecological theory using the information theoretic approach: Examples and cautionary results. Ecology, 86, 2805–2814.
    • (2005) Ecology , vol.86 , pp. 2805-2814
    • Richards, S.A.1
  • 29
    • 85027936490 scopus 로고    scopus 로고
    • Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework
    • Richards, S. A., Whittingham, M. J., & Stephens, P. A. (2011). Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behavioral Ecology Sociobiology, 65, 77–89.
    • (2011) Behavioral Ecology Sociobiology , vol.65 , pp. 77-89
    • Richards, S.A.1    Whittingham, M.J.2    Stephens, P.A.3
  • 30
    • 77956069051 scopus 로고    scopus 로고
    • Simple means to improve the interpretability of regression coefficients
    • Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1, 103–113.
    • (2010) Methods in Ecology and Evolution , vol.1 , pp. 103-113
    • Schielzeth, H.1
  • 31
    • 76349117456 scopus 로고    scopus 로고
    • Confronting collinearity: Comparing methods for disentangling the effects of habitat loss and fragmentation
    • Smith, A., Koper, N., Francis, C. M., & Fahrig, L. (2009). Confronting collinearity: Comparing methods for disentangling the effects of habitat loss and fragmentation. Landscape Ecology, 24, 1271–1285.
    • (2009) Landscape Ecology , vol.24 , pp. 1271-1285
    • Smith, A.1    Koper, N.2    Francis, C.M.3    Fahrig, L.4
  • 34
    • 78650731004 scopus 로고    scopus 로고
    • A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion
    • Symonds, M. R. E., & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behavioral Ecology and Sociobiology, 65, 13–21.
    • (2011) Behavioral Ecology and Sociobiology , vol.65 , pp. 13-21
    • Symonds, M.R.E.1    Moussalli, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.