-
2
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RN-binding proteins by deep learning
-
Alipanahi, B. et al. (2015) Predicting the sequence specificities of DNA-and RN-binding proteins by deep learning. Nat. Biotechnol., 33, 831-838.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
-
3
-
-
84940560152
-
On pixel-wise explanations for non-linear classifier decision by layer-wise relevance propagation
-
Bach, S. et al. (2015) On pixel-wise explanations for non-linear classifier decision by layer-wise relevance propagation. PLoS One, 10, e0130140.
-
(2015)
PLoS One
, vol.10
, pp. e0130140
-
-
Bach, S.1
-
4
-
-
78149257874
-
Combined prediction of Tat and Sec signal peptides with hidden Markov models
-
Bagos, P. G. et al. (2010) Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics, 26, 2811-2817.
-
(2010)
Bioinformatics
, vol.26
, pp. 2811-2817
-
-
Bagos, P.G.1
-
5
-
-
84930742264
-
The twin-arginine protein translocation pathway
-
Berks, B. C. (2015) The twin-arginine protein translocation pathway. Annu. Rev. Biochem., 84, 843-864.
-
(2015)
Annu. Rev. Biochem.
, vol.84
, pp. 843-864
-
-
Berks, B.C.1
-
6
-
-
85047090766
-
-
Software
-
Chollet, F. et al. (2015) Keras. Software available online: https://keras. io.
-
(2015)
-
-
Chollet, F.1
-
7
-
-
70749106492
-
Grammatical-restrained hidden conditional random fields for bioinformatics applications
-
Fariselli, P. et al. (2009) Grammatical-restrained hidden conditional random fields for bioinformatics applications. Algorithms Mol. Biol., 4, 13.
-
(2009)
Algorithms Mol. Biol.
, vol.4
, pp. 13
-
-
Fariselli, P.1
-
8
-
-
84876263504
-
The prediction of organelle targeting peptides in eukaryotic proteins with Grammatical Restrained Hidden Conditional Random Fields
-
Indio, V. et al. (2013) The prediction of organelle targeting peptides in eukaryotic proteins with Grammatical Restrained Hidden Conditional Random Fields. Bioinformatics, 29, 981-988.
-
(2013)
Bioinformatics
, vol.29
, pp. 981-988
-
-
Indio, V.1
-
9
-
-
2142657817
-
A combined transmembrane topology and signal peptide prediction method
-
Käll, L. et al. (2004) A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol., 338, 1027-1036.
-
(2004)
J. Mol. Biol.
, vol.338
, pp. 1027-1036
-
-
Käll, L.1
-
10
-
-
29144483361
-
An HMM posterior decoder for sequence feature prediction that includes homology information
-
Käll, L. et al. (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics, 21, i251-i257.
-
(2005)
Bioinformatics
, vol.21
, pp. i251-i257
-
-
Käll, L.1
-
11
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Pereira, F. (ed. )
-
Krizhevsky, A. et al. (2012) Imagenet classification with deep convolutional neural networks. In: Pereira, F. (ed. ), Advances in Neural Information Processing Systems, pp. 1097-1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
-
12
-
-
84930630277
-
Deep learning
-
LeCun, Y. et al. (2015) Deep learning. Nature, 521, 436-444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
-
13
-
-
0032189258
-
Signal sequences: More than just greasy peptides
-
Martoglio, B. and Dobberstein, B. (1998) Signal sequences: more than just greasy peptides. Trends Cell Biol., 8, 410-415.
-
(1998)
Trends Cell Biol.
, vol.8
, pp. 410-415
-
-
Martoglio, B.1
Dobberstein, B.2
-
14
-
-
85010676902
-
Explaining nonlinear classification decisions with deep Taylor decomposition
-
Montavon, G. et al. (2017) Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn., 65, 211-222.
-
(2017)
Pattern Recogn.
, vol.65
, pp. 211-222
-
-
Montavon, G.1
-
15
-
-
67649472570
-
Transmembrane protein topology prediction using support vector machines
-
Nugent, T. and Jones, D. T. (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics, 10, 159.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 159
-
-
Nugent, T.1
Jones, D.T.2
-
16
-
-
80053345905
-
SignalP 4. 0: Discriminating signal peptides from transmembrane regions
-
Petersen, T. N. et al. (2011) SignalP 4. 0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8, 785-786.
-
(2011)
Nat. Methods
, vol.8
, pp. 785-786
-
-
Petersen, T.N.1
-
17
-
-
57149112523
-
Transmembrane topology and signal peptide prediction using dynamic Bayesian networks
-
Reynolds, S. M. et al. (2008) Transmembrane topology and signal peptide prediction using dynamic Bayesian networks. PLoS Comput. Biol., 4, e1000213.
-
(2008)
PLoS Comput. Biol.
, vol.4
, pp. e1000213
-
-
Reynolds, S.M.1
-
18
-
-
84874329516
-
BETAWARE: A machine-learning tool to detect and predict transmembrane beta-barrel proteins in Prokaryotes
-
Savojardo, C. et al. (2013) BETAWARE: a machine-learning tool to detect and predict transmembrane beta-barrel proteins in Prokaryotes. Bioinformatics, 29, 504-505.
-
(2013)
Bioinformatics
, vol.29
, pp. 504-505
-
-
Savojardo, C.1
-
19
-
-
85021347047
-
ISPRED4: Interaction site PREDiction in protein structures with a refining grammar model
-
Savojardo, C. et al. (2017) ISPRED4: interaction site PREDiction in protein structures with a refining grammar model. Bioinformatics, 33, 1656-1663.
-
(2017)
Bioinformatics
, vol.33
, pp. 1656-1663
-
-
Savojardo, C.1
-
20
-
-
84905220041
-
Deep inside convolutional networks: Visualizing image classification models and saliency maps
-
Simonyan, K. et al. (2013) Deep inside convolutional networks: visualizing image classification models and saliency maps. Comput. Res. Repository, 1312. 6034.
-
(2013)
Comput. Res. Repository
, vol.1312
, pp. 6034
-
-
Simonyan, K.1
-
21
-
-
84925331214
-
Intriguing properties of neural networks
-
Szegedy, C. et al. (2013) Intriguing properties of neural networks. Comput. Res. Repository, 1312. 6199.
-
(2013)
Comput. Res. Repository
, vol.1312
, pp. 6199
-
-
Szegedy, C.1
-
22
-
-
84979862598
-
The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides
-
Tsirigos, K. D. et al. (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res., 43, W401-W407.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. W401-W407
-
-
Tsirigos, K.D.1
-
23
-
-
57249083976
-
SPOCTOPUS: A combined predictor of signal peptides and membrane protein topology
-
Viklund, H. et al. (2008) SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics, 24, 2928-2929.
-
(2008)
Bioinformatics
, vol.24
, pp. 2928-2929
-
-
Viklund, H.1
-
24
-
-
0025297583
-
The signal peptide
-
von Heijne, G. (1990) The signal peptide. J. Membr. Biol., 115, 195-201.
-
(1990)
J. Membr. Biol.
, vol.115
, pp. 195-201
-
-
Von Heijne, G.1
-
25
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou, J. and Troyanskaya, O. G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nature Methods, 12, 931-934.
-
(2015)
Nature Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
|