메뉴 건너뛰기




Volumn 34, Issue 10, 2018, Pages 1690-1696

DeepSig: Deep learning improves signal peptide detection in proteins

Author keywords

[No Author keywords available]

Indexed keywords

SIGNAL PEPTIDE;

EID: 85047096837     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx818     Document Type: Article
Times cited : (91)

References (25)
  • 2
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RN-binding proteins by deep learning
    • Alipanahi, B. et al. (2015) Predicting the sequence specificities of DNA-and RN-binding proteins by deep learning. Nat. Biotechnol., 33, 831-838.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 831-838
    • Alipanahi, B.1
  • 3
    • 84940560152 scopus 로고    scopus 로고
    • On pixel-wise explanations for non-linear classifier decision by layer-wise relevance propagation
    • Bach, S. et al. (2015) On pixel-wise explanations for non-linear classifier decision by layer-wise relevance propagation. PLoS One, 10, e0130140.
    • (2015) PLoS One , vol.10 , pp. e0130140
    • Bach, S.1
  • 4
    • 78149257874 scopus 로고    scopus 로고
    • Combined prediction of Tat and Sec signal peptides with hidden Markov models
    • Bagos, P. G. et al. (2010) Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics, 26, 2811-2817.
    • (2010) Bioinformatics , vol.26 , pp. 2811-2817
    • Bagos, P.G.1
  • 5
    • 84930742264 scopus 로고    scopus 로고
    • The twin-arginine protein translocation pathway
    • Berks, B. C. (2015) The twin-arginine protein translocation pathway. Annu. Rev. Biochem., 84, 843-864.
    • (2015) Annu. Rev. Biochem. , vol.84 , pp. 843-864
    • Berks, B.C.1
  • 6
    • 85047090766 scopus 로고    scopus 로고
    • Software
    • Chollet, F. et al. (2015) Keras. Software available online: https://keras. io.
    • (2015)
    • Chollet, F.1
  • 7
    • 70749106492 scopus 로고    scopus 로고
    • Grammatical-restrained hidden conditional random fields for bioinformatics applications
    • Fariselli, P. et al. (2009) Grammatical-restrained hidden conditional random fields for bioinformatics applications. Algorithms Mol. Biol., 4, 13.
    • (2009) Algorithms Mol. Biol. , vol.4 , pp. 13
    • Fariselli, P.1
  • 8
    • 84876263504 scopus 로고    scopus 로고
    • The prediction of organelle targeting peptides in eukaryotic proteins with Grammatical Restrained Hidden Conditional Random Fields
    • Indio, V. et al. (2013) The prediction of organelle targeting peptides in eukaryotic proteins with Grammatical Restrained Hidden Conditional Random Fields. Bioinformatics, 29, 981-988.
    • (2013) Bioinformatics , vol.29 , pp. 981-988
    • Indio, V.1
  • 9
    • 2142657817 scopus 로고    scopus 로고
    • A combined transmembrane topology and signal peptide prediction method
    • Käll, L. et al. (2004) A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol., 338, 1027-1036.
    • (2004) J. Mol. Biol. , vol.338 , pp. 1027-1036
    • Käll, L.1
  • 10
    • 29144483361 scopus 로고    scopus 로고
    • An HMM posterior decoder for sequence feature prediction that includes homology information
    • Käll, L. et al. (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics, 21, i251-i257.
    • (2005) Bioinformatics , vol.21 , pp. i251-i257
    • Käll, L.1
  • 11
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Pereira, F. (ed. )
    • Krizhevsky, A. et al. (2012) Imagenet classification with deep convolutional neural networks. In: Pereira, F. (ed. ), Advances in Neural Information Processing Systems, pp. 1097-1105.
    • (2012) Advances in Neural Information Processing Systems , pp. 1097-1105
    • Krizhevsky, A.1
  • 12
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y. et al. (2015) Deep learning. Nature, 521, 436-444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1
  • 13
    • 0032189258 scopus 로고    scopus 로고
    • Signal sequences: More than just greasy peptides
    • Martoglio, B. and Dobberstein, B. (1998) Signal sequences: more than just greasy peptides. Trends Cell Biol., 8, 410-415.
    • (1998) Trends Cell Biol. , vol.8 , pp. 410-415
    • Martoglio, B.1    Dobberstein, B.2
  • 14
    • 85010676902 scopus 로고    scopus 로고
    • Explaining nonlinear classification decisions with deep Taylor decomposition
    • Montavon, G. et al. (2017) Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn., 65, 211-222.
    • (2017) Pattern Recogn. , vol.65 , pp. 211-222
    • Montavon, G.1
  • 15
    • 67649472570 scopus 로고    scopus 로고
    • Transmembrane protein topology prediction using support vector machines
    • Nugent, T. and Jones, D. T. (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics, 10, 159.
    • (2009) BMC Bioinformatics , vol.10 , pp. 159
    • Nugent, T.1    Jones, D.T.2
  • 16
    • 80053345905 scopus 로고    scopus 로고
    • SignalP 4. 0: Discriminating signal peptides from transmembrane regions
    • Petersen, T. N. et al. (2011) SignalP 4. 0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8, 785-786.
    • (2011) Nat. Methods , vol.8 , pp. 785-786
    • Petersen, T.N.1
  • 17
    • 57149112523 scopus 로고    scopus 로고
    • Transmembrane topology and signal peptide prediction using dynamic Bayesian networks
    • Reynolds, S. M. et al. (2008) Transmembrane topology and signal peptide prediction using dynamic Bayesian networks. PLoS Comput. Biol., 4, e1000213.
    • (2008) PLoS Comput. Biol. , vol.4 , pp. e1000213
    • Reynolds, S.M.1
  • 18
    • 84874329516 scopus 로고    scopus 로고
    • BETAWARE: A machine-learning tool to detect and predict transmembrane beta-barrel proteins in Prokaryotes
    • Savojardo, C. et al. (2013) BETAWARE: a machine-learning tool to detect and predict transmembrane beta-barrel proteins in Prokaryotes. Bioinformatics, 29, 504-505.
    • (2013) Bioinformatics , vol.29 , pp. 504-505
    • Savojardo, C.1
  • 19
    • 85021347047 scopus 로고    scopus 로고
    • ISPRED4: Interaction site PREDiction in protein structures with a refining grammar model
    • Savojardo, C. et al. (2017) ISPRED4: interaction site PREDiction in protein structures with a refining grammar model. Bioinformatics, 33, 1656-1663.
    • (2017) Bioinformatics , vol.33 , pp. 1656-1663
    • Savojardo, C.1
  • 20
    • 84905220041 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualizing image classification models and saliency maps
    • Simonyan, K. et al. (2013) Deep inside convolutional networks: visualizing image classification models and saliency maps. Comput. Res. Repository, 1312. 6034.
    • (2013) Comput. Res. Repository , vol.1312 , pp. 6034
    • Simonyan, K.1
  • 21
    • 84925331214 scopus 로고    scopus 로고
    • Intriguing properties of neural networks
    • Szegedy, C. et al. (2013) Intriguing properties of neural networks. Comput. Res. Repository, 1312. 6199.
    • (2013) Comput. Res. Repository , vol.1312 , pp. 6199
    • Szegedy, C.1
  • 22
    • 84979862598 scopus 로고    scopus 로고
    • The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides
    • Tsirigos, K. D. et al. (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res., 43, W401-W407.
    • (2015) Nucleic Acids Res. , vol.43 , pp. W401-W407
    • Tsirigos, K.D.1
  • 23
    • 57249083976 scopus 로고    scopus 로고
    • SPOCTOPUS: A combined predictor of signal peptides and membrane protein topology
    • Viklund, H. et al. (2008) SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics, 24, 2928-2929.
    • (2008) Bioinformatics , vol.24 , pp. 2928-2929
    • Viklund, H.1
  • 24
    • 0025297583 scopus 로고
    • The signal peptide
    • von Heijne, G. (1990) The signal peptide. J. Membr. Biol., 115, 195-201.
    • (1990) J. Membr. Biol. , vol.115 , pp. 195-201
    • Von Heijne, G.1
  • 25
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou, J. and Troyanskaya, O. G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nature Methods, 12, 931-934.
    • (2015) Nature Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.