메뉴 건너뛰기




Volumn 4, Issue 1, 2009, Pages 13-

Grammatical-restrained hidden conditional random fields for bioinformatics applications

Author keywords

[No Author keywords available]

Indexed keywords

PROKARYOTA;

EID: 70749106492     PISSN: None     EISSN: 17487188     Source Type: Journal    
DOI: 10.1186/1748-7188-4-13     Document Type: Article
Times cited : (18)

References (22)
  • 4
    • 0142192295 scopus 로고    scopus 로고
    • Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
    • Lafferty J, McCallum A, Pereira F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. Proceedings of ICML01 2001, 282-289.
    • (2001) Proceedings of ICML01 , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 5
    • 33645964629 scopus 로고    scopus 로고
    • Protein fold recognition using segmentation conditional random fields (SCRFs)
    • 10.1089/cmb.2006.13.394, 16597248
    • Liu Y, Carbonell J, Weigele P, Gopalakrishnan V. Protein fold recognition using segmentation conditional random fields (SCRFs). Journal of Computational Biology 2006, 13(2):394-406. 10.1089/cmb.2006.13.394, 16597248.
    • (2006) Journal of Computational Biology , vol.13 , Issue.2 , pp. 394-406
    • Liu, Y.1    Carbonell, J.2    Weigele, P.3    Gopalakrishnan, V.4
  • 6
    • 27544451563 scopus 로고    scopus 로고
    • RNA secondary structural alignment with conditional random fields
    • Sato K, Sakakibara Y. RNA secondary structural alignment with conditional random fields. Bioinformatics 2005, 21(2):237-242.
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 237-242
    • Sato, K.1    Sakakibara, Y.2
  • 7
    • 44349150513 scopus 로고    scopus 로고
    • OnD-CRF: predicting order and disorder in proteins conditional random fields
    • 10.1093/bioinformatics/btn132, 2387219, 18430742
    • Wang L, Sauer UH. OnD-CRF: predicting order and disorder in proteins conditional random fields. Bioinformatics 2008, 24(11):1401-1402. 10.1093/bioinformatics/btn132, 2387219, 18430742.
    • (2008) Bioinformatics , vol.24 , Issue.11 , pp. 1401-1402
    • Wang, L.1    Sauer, U.H.2
  • 8
    • 54949112147 scopus 로고    scopus 로고
    • An unsupervised conditional random fields approach for clustering gene expression time series
    • 10.1093/bioinformatics/btn375, 18718949
    • Li CT, Yuan Y, Wilson R. An unsupervised conditional random fields approach for clustering gene expression time series. Bioinformatics 2008, 24(21):2467-2473. 10.1093/bioinformatics/btn375, 18718949.
    • (2008) Bioinformatics , vol.24 , Issue.21 , pp. 2467-2473
    • Li, C.T.1    Yuan, Y.2    Wilson, R.3
  • 9
    • 34047104592 scopus 로고    scopus 로고
    • Protein protein interaction site prediction based on conditional random fields
    • 10.1093/bioinformatics/btl660, 17234636
    • Li MH, Lin L, Wang XL, Liu T. Protein protein interaction site prediction based on conditional random fields. Bioinformatics 2007, 23(5):597-604. 10.1093/bioinformatics/btl660, 17234636.
    • (2007) Bioinformatics , vol.23 , Issue.5 , pp. 597-604
    • Li, M.H.1    Lin, L.2    Wang, X.L.3    Liu, T.4
  • 10
    • 57249105125 scopus 로고    scopus 로고
    • Prediction of kinase-specific phosphorylation sites using conditional random fields
    • 10.1093/bioinformatics/btn546, 2639296, 18940828
    • Dang TH, Van Leemput K, Verschoren A, Laukens K. Prediction of kinase-specific phosphorylation sites using conditional random fields. Bioinformatics 2008, 24(24):2857-2864. 10.1093/bioinformatics/btn546, 2639296, 18940828.
    • (2008) Bioinformatics , vol.24 , Issue.24 , pp. 2857-2864
    • Dang, T.H.1    Van Leemput, K.2    Verschoren, A.3    Laukens, K.4
  • 11
    • 65649112842 scopus 로고    scopus 로고
    • MICAlign: a sequence-to-structure alignment tool integrating multiple sources of information in conditional random fields
    • 10.1093/bioinformatics/btp251, 19359356
    • Xia X, Zhang S, Su Y, Sun Z. MICAlign: a sequence-to-structure alignment tool integrating multiple sources of information in conditional random fields. Bioinformatics 2009, 25(11):1433-1434. 10.1093/bioinformatics/btp251, 19359356.
    • (2009) Bioinformatics , vol.25 , Issue.11 , pp. 1433-1434
    • Xia, X.1    Zhang, S.2    Su, Y.3    Sun, Z.4
  • 12
    • 33845593205 scopus 로고    scopus 로고
    • Hidden Conditional Random Fields for Gesture Recognition
    • Wang S, Quattoni A, Morency L, Demirdjian D. Hidden Conditional Random Fields for Gesture Recognition. CVPR 2006, II:1521-1527.
    • (2006) CVPR , vol.II , pp. 1521-1527
    • Wang, S.1    Quattoni, A.2    Morency, L.3    Demirdjian, D.4
  • 14
    • 33749253818 scopus 로고    scopus 로고
    • Conditional Random Fields for Object Recognition
    • Cambridge, MA: MIT Press, Saul LK, Weiss Y, Bottou L
    • Quattoni A, Collins M, Darrell T. Conditional Random Fields for Object Recognition. Advances in Neural Information Processing Systems 17 2005, 1097-1104. Cambridge, MA: MIT Press, Saul LK, Weiss Y, Bottou L.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 1097-1104
    • Quattoni, A.1    Collins, M.2    Darrell, T.3
  • 15
    • 33947417295 scopus 로고    scopus 로고
    • A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins
    • 10.1186/1471-2105-6-S4-S12, 1866396, 16351738
    • Fariselli P, Martelli P, Casadio R. A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins. BMC Bioinformatics 2005, 6(Suppl 4):S12. 10.1186/1471-2105-6-S4-S12, 1866396, 16351738.
    • (2005) BMC Bioinformatics , vol.6 , Issue.SUPPL. 4
    • Fariselli, P.1    Martelli, P.2    Casadio, R.3
  • 17
    • 85115214750 scopus 로고
    • Hidden Markov Models for Labeled Sequences
    • IEEE Computer Society Press
    • Krogh A. Hidden Markov Models for Labeled Sequences. Proceedings of the 12th IAPR ICPR'94 1994, 140-144. IEEE Computer Society Press.
    • (1994) Proceedings of the 12th IAPR ICPR'94 , pp. 140-144
    • Krogh, A.1
  • 18
    • 4243671284 scopus 로고    scopus 로고
    • A sequence-profile-based HMM for predicting and discriminating beta barrel membrane proteins
    • Martelli P, Fariselli P, Krogh A, Casadio R. A sequence-profile-based HMM for predicting and discriminating beta barrel membrane proteins. Bioinformatics 2002, 18(Suppl 1):46-53.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1 , pp. 46-53
    • Martelli, P.1    Fariselli, P.2    Krogh, A.3    Casadio, R.4
  • 20
    • 13244259253 scopus 로고    scopus 로고
    • Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method
    • 10.1186/1471-2105-6-7, 545999, 15647112
    • Bagos P, Liakopoulos T, Hamodrakas S. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. BMC Bioinformatics 2005, 6:7-20. 10.1186/1471-2105-6-7, 545999, 15647112.
    • (2005) BMC Bioinformatics , vol.6 , pp. 7-20
    • Bagos, P.1    Liakopoulos, T.2    Hamodrakas, S.3
  • 21
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
    • 10.1002/bip.360221211, 6667333
    • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22(12):2577-2637. 10.1002/bip.360221211, 6667333.
    • (1983) Biopolymers , vol.22 , Issue.12 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 22
    • 33947615175 scopus 로고    scopus 로고
    • Dynamic Conditional Random Fields: Factorized Probabilistic Models for Labeling and Segmenting Sequence Data
    • Sutton C, McCallum A, Rohanimanesh K. Dynamic Conditional Random Fields: Factorized Probabilistic Models for Labeling and Segmenting Sequence Data. J Mach Learn Res 2007, 8:693-723.
    • (2007) J Mach Learn Res , vol.8 , pp. 693-723
    • Sutton, C.1    McCallum, A.2    Rohanimanesh, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.