메뉴 건너뛰기




Volumn 338, Issue 5, 2004, Pages 1027-1036

A combined transmembrane topology and signal peptide prediction method

Author keywords

Hidden Markov model; HMM, hidden Markov model; Machine learning; Signal peptide; SPs, signal peptides; TM, transmembrane; Topology prediction; Transmembrane protein

Indexed keywords

MEMBRANE PROTEIN; NITROGEN; PEPTIDE; PROTEOME;

EID: 2142657817     PISSN: 00222836     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmb.2004.03.016     Document Type: Article
Times cited : (1853)

References (40)
  • 1
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
    • Krogh A., Larsson B., von Heijne G., Sonnhammer E.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305:2001;567-580.
    • (2001) J. Mol. Biol. , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    Von Heijne, G.3    Sonnhammer, E.L.4
  • 2
    • 0032561132 scopus 로고    scopus 로고
    • Principles governing amino acid composition of integral membrane proteins: Application to topology prediction
    • Tusnady G.E., Simon I. Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J. Mol. Biol. 283:1998;489-506.
    • (1998) J. Mol. Biol. , vol.283 , pp. 489-506
    • Tusnady, G.E.1    Simon, I.2
  • 3
    • 0036947980 scopus 로고    scopus 로고
    • The presence of signal peptide significantly affects transmembrane topology prediction
    • Lao D.M., Arai M., Ikeda M., Shimizu T. The presence of signal peptide significantly affects transmembrane topology prediction. Bioinformatics. 18:2002;1562-1566.
    • (2002) Bioinformatics , vol.18 , pp. 1562-1566
    • Lao, D.M.1    Arai, M.2    Ikeda, M.3    Shimizu, T.4
  • 4
    • 0030614959 scopus 로고    scopus 로고
    • Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
    • Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10:1997;1-6.
    • (1997) Protein Eng. , vol.10 , pp. 1-6
    • Nielsen, H.1    Engelbrecht, J.2    Brunak, S.3    Von Heijne, G.4
  • 5
    • 0031603460 scopus 로고    scopus 로고
    • Prediction of signal peptides and signal anchors by a hidden Markov model
    • Nielsen H., Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov model. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6:1998;122-130.
    • (1998) Proc. Int. Conf. Intell. Syst. Mol. Biol. , vol.6 , pp. 122-130
    • Nielsen, H.1    Krogh, A.2
  • 7
    • 0020475449 scopus 로고
    • A simple method for displaying the hydropathic character of a protein
    • Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:1982;105-132.
    • (1982) J. Mol. Biol. , vol.157 , pp. 105-132
    • Kyte, J.1    Doolittle, R.F.2
  • 8
    • 0020484234 scopus 로고
    • Structural prediction of membrane-bound proteins
    • Argos P., Rao J.K., Hargrave P.A. Structural prediction of membrane-bound proteins. Eur. J. Biochem. 128:1982;565-575.
    • (1982) Eur. J. Biochem. , vol.128 , pp. 565-575
    • Argos, P.1    Rao, J.K.2    Hargrave, P.A.3
  • 9
    • 0000651660 scopus 로고
    • The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology
    • von Heijne G. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5:1986;3021-3027.
    • (1986) EMBO J. , vol.5 , pp. 3021-3027
    • Von Heijne, G.1
  • 10
    • 0026716643 scopus 로고
    • Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule
    • von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225:1992;487-494.
    • (1992) J. Mol. Biol. , vol.225 , pp. 487-494
    • Von Heijne, G.1
  • 11
    • 0030759333 scopus 로고    scopus 로고
    • Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: The dense alignment surface method
    • Cserzo M., Wallin E., Simon I., von Heijne G., Elofsson A. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10:1997;673-676.
    • (1997) Protein Eng. , vol.10 , pp. 673-676
    • Cserzo, M.1    Wallin, E.2    Simon, I.3    Von Heijne, G.4    Elofsson, A.5
  • 13
    • 0028211273 scopus 로고
    • A model recognition approach to the prediction of all-helical membrane protein structure and topology
    • Jones D.T., Taylor W.R., Thornton J.M. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry. 33:1994;3038-3049.
    • (1994) Biochemistry , vol.33 , pp. 3038-3049
    • Jones, D.T.1    Taylor, W.R.2    Thornton, J.M.3
  • 14
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE. 77:1989;257-286.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 16
    • 4243671284 scopus 로고    scopus 로고
    • A sequence-profile-based HMM for predicting and discriminating beta barrel membrane proteins
    • Martelli P.L., Fariselli P., Krogh A., Casadio R. A sequence-profile- based HMM for predicting and discriminating beta barrel membrane proteins. Bioinformatics. 18:2002;S46-S53.
    • (2002) Bioinformatics , vol.18
    • Martelli, P.L.1    Fariselli, P.2    Krogh, A.3    Casadio, R.4
  • 17
    • 0036708003 scopus 로고    scopus 로고
    • The beta-barrel finder (BBF) program, allowing identification of outer membrane beta-barrel proteins encoded within prokaryotic genomes
    • Zhai Y., Saier M.H. The beta-barrel finder (BBF) program, allowing identification of outer membrane beta-barrel proteins encoded within prokaryotic genomes. Protein Sci. 11:2002;2196-2207.
    • (2002) Protein Sci. , vol.11 , pp. 2196-2207
    • Zhai, Y.1    Saier, M.H.2
  • 18
    • 0020770479 scopus 로고
    • Patterns of amino acids near signal-sequence cleavage sites
    • von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem. 133:1983;17-21.
    • (1983) Eur. J. Biochem. , vol.133 , pp. 17-21
    • Von Heijne, G.1
  • 19
    • 0020638192 scopus 로고
    • A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides
    • Perlman D., Halvorson H.O. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Biol. 167:1983;391-409.
    • (1983) J. Mol. Biol. , vol.167 , pp. 391-409
    • Perlman, D.1    Halvorson, H.O.2
  • 20
    • 0023046815 scopus 로고
    • A new method for predicting signal sequence cleavage sites
    • von Heijne G. A new method for predicting signal sequence cleavage sites. Nucl. Acids Res. 14:1986;4683-4690.
    • (1986) Nucl. Acids Res. , vol.14 , pp. 4683-4690
    • Von Heijne, G.1
  • 21
    • 0035178419 scopus 로고    scopus 로고
    • Prediction of protein signal sequences and their cleavage sites
    • Chou K.C. Prediction of protein signal sequences and their cleavage sites. Proteins: Struct. Funct. Genet. 42:2001;136-139.
    • (2001) Proteins: Struct. Funct. Genet. , vol.42 , pp. 136-139
    • Chou, K.C.1
  • 22
    • 0036366691 scopus 로고    scopus 로고
    • Support vector machine prediction of signal peptide cleavage site using a new class of kernels for strings
    • Vert J.P. Support vector machine prediction of signal peptide cleavage site using a new class of kernels for strings. Pac. Symp. Biocomput. 2002;649-660.
    • (2002) Pac. Symp. Biocomput. , pp. 649-660
    • Vert, J.P.1
  • 23
    • 0033738137 scopus 로고    scopus 로고
    • A comparison of signal sequence prediction methods using a test set of signal peptides
    • Menne K.M., Hermjakob H., Apweiler R. A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics. 16:2000;741-742.
    • (2000) Bioinformatics , vol.16 , pp. 741-742
    • Menne, K.M.1    Hermjakob, H.2    Apweiler, R.3
  • 25
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology. Applications to protein modeling
    • Krogh A., Brown M., Mian I.S., Sjolander K., Haussler D. Hidden Markov models in computational biology. Applications to protein modeling. J. Mol. Biol. 235:1994;1501-1531.
    • (1994) J. Mol. Biol. , vol.235 , pp. 1501-1531
    • Krogh, A.1    Brown, M.2    Mian, I.S.3    Sjolander, K.4    Haussler, D.5
  • 26
    • 0031240609 scopus 로고    scopus 로고
    • A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
    • Nielsen H., Engelbrecht J., Brunak S., von Heijne G. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int. J. Neural Syst. 8:1997;581-599.
    • (1997) Int. J. Neural Syst. , vol.8 , pp. 581-599
    • Nielsen, H.1    Engelbrecht, J.2    Brunak, S.3    Von Heijne, G.4
  • 28
    • 0037472764 scopus 로고    scopus 로고
    • Comprehensive analysis of transmembrane topologies in prokaryotic genomes
    • Arai M., Ikeda M., Shimizu T. Comprehensive analysis of transmembrane topologies in prokaryotic genomes. Gene. 304:2003;77-86.
    • (2003) Gene , vol.304 , pp. 77-86
    • Arai, M.1    Ikeda, M.2    Shimizu, T.3
  • 29
    • 0037132511 scopus 로고    scopus 로고
    • Reliability of transmembrane predictions in whole-genome data
    • Käll L., Sonnhammer E.L. Reliability of transmembrane predictions in whole-genome data. FEBS Letters. 532:2002;415-418.
    • (2002) FEBS Letters , vol.532 , pp. 415-418
    • Käll, L.1    Sonnhammer, E.L.2
  • 30
    • 0344406716 scopus 로고    scopus 로고
    • Reliability measures for membrane protein topology prediction algorithms
    • Melen K., Krogh A., von Heijne G. Reliability measures for membrane protein topology prediction algorithms. J. Mol. Biol. 327:2003;735-744.
    • (2003) J. Mol. Biol. , vol.327 , pp. 735-744
    • Melen, K.1    Krogh, A.2    Von Heijne, G.3
  • 33
    • 0034899781 scopus 로고    scopus 로고
    • Evaluation of methods for the prediction of membrane spanning regions
    • Möller S., Croning M.D., Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics. 17:2001;646-653.
    • (2001) Bioinformatics , vol.17 , pp. 646-653
    • Möller, S.1    Croning, M.D.2    Apweiler, R.3
  • 34
    • 0036893269 scopus 로고    scopus 로고
    • Transmembrane helix predictions revisited
    • Chen C.P., Kernytsky A., Rost B. Transmembrane helix predictions revisited. Protein Sci. 11:2002;2774-2791.
    • (2002) Protein Sci. , vol.11 , pp. 2774-2791
    • Chen, C.P.1    Kernytsky, A.2    Rost, B.3
  • 35
    • 0037249645 scopus 로고    scopus 로고
    • TMPDB: A database of experimentally-characterized transmembrane topologies
    • Ikeda M., Arai M., Okuno T., Shimizu T. TMPDB: a database of experimentally-characterized transmembrane topologies. Nucl. Acids Res. 31:2003;406-409.
    • (2003) Nucl. Acids Res. , vol.31 , pp. 406-409
    • Ikeda, M.1    Arai, M.2    Okuno, T.3    Shimizu, T.4
  • 36
    • 0034495418 scopus 로고    scopus 로고
    • A collection of well characterised integral membrane proteins
    • Möller S., Kriventseva E.V., Apweiler R. A collection of well characterised integral membrane proteins. Bioinformatics. 16:2000;1159-1160.
    • (2000) Bioinformatics , vol.16 , pp. 1159-1160
    • Möller, S.1    Kriventseva, E.V.2    Apweiler, R.3
  • 37
    • 0028276887 scopus 로고
    • A workbench for large-scale sequence homology analysis
    • Sonnhammer E.L., Durbin R. A workbench for large-scale sequence homology analysis. Comput. Appl. Biosci. 10:1994;301-307.
    • (1994) Comput. Appl. Biosci. , vol.10 , pp. 301-307
    • Sonnhammer, E.L.1    Durbin, R.2
  • 40
    • 0025627406 scopus 로고
    • The N-best algorithm: An efficient and exact procedure for finding the N most likely sentence hypotheses
    • Schwartz R., Chow Y. The N-best algorithm: an efficient and exact procedure for finding the N most likely sentence hypotheses. Proc. ICASSP, Albuquerque, NM. 1990:1990;81-84.
    • (1990) Proc. ICASSP, Albuquerque, NM , vol.1990 , pp. 81-84
    • Schwartz, R.1    Chow, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.