-
2
-
-
84990954747
-
IFeel: A system that compares and combines sentiment analysis methods
-
Matheus Araújo, Pollyanna Gonçalves, Meeyoung Cha, and Fabríckt Benevenuto. 2014. iFeel: A system that compares and combines sentiment analysis methods. In WWW, pages 75-78.
-
(2014)
WWW
, pp. 75-78
-
-
Araújo, M.1
Gonçalves, P.2
Cha, M.3
Benevenuto, F.4
-
4
-
-
84892062680
-
A survey of clustering data mining techniques
-
Pavel Berkhin. 2006. A survey of clustering data mining techniques. Grouping multidimensional data, pages 25-71.
-
(2006)
Grouping Multidimensional Data
, pp. 25-71
-
-
Berkhin, P.1
-
5
-
-
0035789317
-
Random projection in dimensionality reduction: Applications to image and text data
-
Ella Bingham and Heikki Mannila. 2001. Random projection in dimensionality reduction: applications to image and text data. In ACM SIGKDD, pages 245-250.
-
(2001)
ACM SIGKDD
, pp. 245-250
-
-
Bingham, E.1
Mannila, H.2
-
6
-
-
84860524227
-
Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
-
John Blitzer, Mark Dredze, and Fernando Pereira. 2007. Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, Volume 7, pages 440-447.
-
(2007)
ACL
, vol.7
, pp. 440-447
-
-
Blitzer, J.1
Dredze, M.2
Pereira, F.3
-
7
-
-
84924582295
-
Meta-level sentiment models for big social data analysis
-
Felipe Bravo-Marquez, Marcelo Mendoza, and Barbara Poblete. 2014. Meta-level sentiment models for big social data analysis. Knowledge-Based Systems, 69: 86-99.
-
(2014)
Knowledge-Based Systems
, vol.69
, pp. 86-99
-
-
Bravo-Marquez, F.1
Mendoza, M.2
Poblete, B.3
-
9
-
-
84899050913
-
Jumping NLP curves: A review of natural language processing research
-
Erik Cambria and Bebo White. 2014. Jumping NLP curves: A review of natural language processing research. IEEE Computational Intelligence Magazine, 9(2): 48-57.
-
(2014)
IEEE Computational Intelligence Magazine
, vol.9
, Issue.2
, pp. 48-57
-
-
Cambria, E.1
White, B.2
-
10
-
-
84908152207
-
SenticNet 3: A common and common-sense knowledge base for cognition-driven sentiment analysis
-
Quebec City
-
Erik Cambria, Daniel Olsher, and Dheeraj Rajagopal. 2014. SenticNet 3: A common and common-sense knowledge base for cognition-driven sentiment analysis. In AAAI, pages 1515-1521, Quebec City.
-
(2014)
AAAI
, pp. 1515-1521
-
-
Cambria, E.1
Olsher, D.2
Rajagopal, D.3
-
11
-
-
84959482068
-
AffectiveSpace 2: Enabling affective intuition for concept-level sentiment analysis
-
Austin
-
Erik Cambria, Jie Fu, Federica Bisio, and Soujanya Poria. 2015. AffectiveSpace 2: Enabling affective intuition for concept-level sentiment analysis. In AAAI, pages 508-514, Austin.
-
(2015)
AAAI
, pp. 508-514
-
-
Cambria, E.1
Fu, J.2
Bisio, F.3
Poria, S.4
-
12
-
-
84963783209
-
Affective computing and sentiment analysis
-
Erik Cambria. 2016. Affective computing and sentiment analysis. IEEE Intelligent Systems, 31(2): 102-107.
-
(2016)
IEEE Intelligent Systems
, vol.31
, Issue.2
, pp. 102-107
-
-
Cambria, E.1
-
13
-
-
84932166511
-
Deep convolutional neural networks for sentiment analysis of short texts
-
Cicero Nogueira dos Santos and Maira Gatti. 2014. Deep convolutional neural networks for sentiment analysis of short texts. In COLING, pages 69-78.
-
(2014)
COLING
, pp. 69-78
-
-
Dos Santos, C.N.1
Gatti, M.2
-
15
-
-
84980509330
-
Su-sentilab: A classification system for sentiment analysis in twitter
-
Gizem Gezici, Rahim Dehkharghani, Berrin Yanikoglu, Dilek Tapucu, and Yucel Saygin. 2013. Su-sentilab: A classification system for sentiment analysis in twitter. In International Workshop on Semantic Evaluation, pages 471-477.
-
(2013)
International Workshop on Semantic Evaluation
, pp. 471-477
-
-
Gezici, G.1
Dehkharghani, R.2
Yanikoglu, B.3
Tapucu, D.4
Saygin, Y.5
-
16
-
-
84925900369
-
Toward an explanatory semantic representation
-
Ray Jackendoff. 1976. Toward an explanatory semantic representation. Linguistic Inquiry, 1(1): 89-150.
-
(1976)
Linguistic Inquiry
, vol.1
, Issue.1
, pp. 89-150
-
-
Jackendoff, R.1
-
18
-
-
80053540444
-
Unsupervised learning of hierarchical representations with convolutional deep belief networks
-
Honglak Lee, Roger Grosse, Rajesh Ranganath, and A. Y. Ng. 2011. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10): 95-103.
-
(2011)
Communications of the ACM
, vol.54
, Issue.10
, pp. 95-103
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
21
-
-
70350645448
-
Sentiment analysis of blogs by combining lexical knowledge with text classification
-
Prem Melville, Wojciech Gryc, and Richard D Lawrence. 2009. Sentiment analysis of blogs by combining lexical knowledge with text classification. In ACM SIGKDD, pages 1275-1284.
-
(2009)
ACM SIGKDD
, pp. 1275-1284
-
-
Melville, P.1
Gryc, W.2
Lawrence, R.D.3
-
22
-
-
0003015874
-
A framework for representing knowledge
-
Patrick Winston, editor McGraw-Hill, New York
-
Marvin Minsky. 1975. A framework for representing knowledge. In Patrick Winston, editor, The psychology of computer vision. McGraw-Hill, New York.
-
(1975)
The Psychology of Computer Vision
-
-
Minsky, M.1
-
23
-
-
84859895244
-
Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
-
Ann Arbor
-
Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL, pages 115-124, Ann Arbor.
-
(2005)
ACL
, pp. 115-124
-
-
Pang, B.1
Lee, L.2
-
25
-
-
85141803251
-
Thumbs up?: Sentiment classification using machine learning techniques
-
Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up?: Sentiment classification using machine learning techniques. In EMNLP, Volume 10, pages 79-86.
-
(2002)
EMNLP
, vol.10
, pp. 79-86
-
-
Pang, B.1
Lee, L.2
Vaithyanathan, S.3
-
26
-
-
33646894388
-
Contextual valence shifters
-
Springer, Berlin, Germany
-
Livia Polanyi and Annie Zaenen. 2006. Contextual valence shifters. In Computing Attitude and Affect in Text: Theory and Applications, Volume 20 of The Information Retrieval Series, pages 1-10. Springer, Berlin, Germany.
-
(2006)
Computing Attitude and Affect in Text: Theory and Applications, Volume 20 of the Information Retrieval Series
, pp. 1-10
-
-
Polanyi, L.1
Zaenen, A.2
-
27
-
-
84944871800
-
Sentiment data flow analysis by means of dynamic linguistic patterns
-
Soujanya Poria, Erik Cambria, Alexander Gelbukh, Federica Bisio, and Amir Hussain. 2015. Sentiment data flow analysis by means of dynamic linguistic patterns. IEEE Computational Intelligence Magazine, 10(4): 26-36.
-
(2015)
IEEE Computational Intelligence Magazine
, vol.10
, Issue.4
, pp. 26-36
-
-
Poria, S.1
Cambria, E.2
Gelbukh, A.3
Bisio, F.4
Hussain, A.5
-
28
-
-
84981713239
-
Aspect extraction for opinion mining with a deep convolutional neural network
-
Soujanya Poria, Erik Cambria, and Alexander Gelbukh. 2016a. Aspect extraction for opinion mining with a deep convolutional neural network. Knowledge-Based Systems, 108: 42-49.
-
(2016)
Knowledge-Based Systems
, vol.108
, pp. 42-49
-
-
Poria, S.1
Cambria, E.2
Gelbukh, A.3
-
29
-
-
84941006193
-
Fusing audio, visual and textual clues for sentiment analysis from multimodal content
-
Soujanya Poria, Erik Cambria, Newton Howard, Guang-Bin Huang, and Amir Hussain. 2016b. Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing, 174: 50-59.
-
(2016)
Neurocomputing
, vol.174
, pp. 50-59
-
-
Poria, S.1
Cambria, E.2
Howard, N.3
Huang, G.-B.4
Hussain, A.5
-
30
-
-
85007199314
-
Sentic LDA: Improving on LDA with semantic similarity for aspect-based sentiment analysis
-
Soujanya Poria, Iti Chaturvedi, Erik Cambria, and Federica Bisio. 2016c. Sentic LDA: Improving on LDA with semantic similarity for aspect-based sentiment analysis. In IJCNN.
-
(2016)
IJCNN
-
-
Poria, S.1
Chaturvedi, I.2
Cambria, E.3
Bisio, F.4
-
31
-
-
84943014678
-
Sentilo: Frame-based sentiment analysis
-
Diego Reforgiato Recupero, Valentina Presutti, Sergio Consoli, Aldo Gangemi, and Andrea Nuzzolese. 2014. Sentilo: Frame-based sentiment analysis. Cognitive Computation, 7(2): 211-225.
-
(2014)
Cognitive Computation
, vol.7
, Issue.2
, pp. 211-225
-
-
Recupero, D.R.1
Presutti, V.2
Consoli, S.3
Gangemi, A.4
Nuzzolese, A.5
-
32
-
-
0003088064
-
The representation of knowledge in memory
-
C Anderson, R Spiro, and W Montague, editors Erlbaum, Hillsdale, NJ
-
David Rumelhart and Andrew Ortony. 1977. The representation of knowledge in memory. In C Anderson, R Spiro, and W Montague, editors, Schooling and the acquisition of knowledge. Erlbaum, Hillsdale, NJ.
-
(1977)
Schooling and the Acquisition of Knowledge
-
-
Rumelhart, D.1
Ortony, A.2
-
33
-
-
35348901208
-
Improved approximation algorithms for large matrices via random projections
-
Tamas Sarlos. 2006. Improved approximation algorithms for large matrices via random projections. In FOCS, pages 143-152.
-
(2006)
FOCS
, pp. 143-152
-
-
Sarlos, T.1
-
34
-
-
5544324885
-
Conceptual dependency: A theory of natural language understanding
-
Roger Schänk. 1972. Conceptual dependency: A theory of natural language understanding. Cognitive Psychology, 3: 552-631.
-
(1972)
Cognitive Psychology
, vol.3
, pp. 552-631
-
-
Schänk, R.1
-
37
-
-
84870715081
-
Semantic compositionality through recursive matrix-vector spaces
-
Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. 2012. Semantic compositionality through recursive matrix-vector spaces. In EMNLP, pages 1201-1211.
-
(2012)
EMNLP
, pp. 1201-1211
-
-
Socher, R.1
Huval, B.2
Manning, C.D.3
Ng, A.Y.4
-
38
-
-
84926358845
-
Recursive deep models for semantic compositionality over a sentiment treebank
-
Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, pages 1642-1654.
-
(2013)
EMNLP
, pp. 1642-1654
-
-
Socher, R.1
Perelygin, A.2
Wu, J.Y.3
Chuang, J.4
Manning, C.D.5
Ng, A.Y.6
Potts, C.7
-
39
-
-
84876932893
-
ConceptNet 5: A large semantic network for relational knowledge
-
Eduard Hovy, M Johnson, and G Hirst, editors chapter 6. Springer
-
Robert Speer and Catherine Havasi. 2012. ConceptNet 5: A large semantic network for relational knowledge. In Eduard Hovy, M Johnson, and G Hirst, editors, Theory and Applications of Natural Language Processing, chapter 6. Springer.
-
(2012)
Theory and Applications of Natural Language Processing
-
-
Speer, R.1
Havasi, C.2
-
40
-
-
85029531951
-
WordNet-affect: An affective extension of WordNet
-
Lisbon
-
Carlo Strapparava and Alessandro Valitutti. 2004. WordNet-Affect: An affective extension of WordNet. InLREC, pages 1083-1086, Lisbon.
-
(2004)
InLREC
, pp. 1083-1086
-
-
Strapparava, C.1
Valitutti, A.2
-
41
-
-
85090890113
-
Coooolll: A deep learning system for twitter sentiment classification
-
Duyu Tang, Furu Wei, Bing Qin, Ting Liu, and Ming Zhou. 2014a. Coooolll: A deep learning system for twitter sentiment classification. In SemEval, pages 208-212.
-
(2014)
SemEval
, pp. 208-212
-
-
Tang, D.1
Wei, F.2
Qin, B.3
Liu, T.4
Zhou, M.5
-
42
-
-
84906924350
-
Learning sentiment-specific word embedding for twitter sentiment classification
-
Duyu Tang, Furu Wei, Nan Yang, Ting Liu, and Bing Qin. 2014b. Learning sentiment-specific word embedding for twitter sentiment classification. In ACL, pages 1555-1565.
-
(2014)
ACL
, pp. 1555-1565
-
-
Tang, D.1
Wei, F.2
Yang, N.3
Liu, T.4
Qin, B.5
-
43
-
-
80052645998
-
Improved analysis of the subsampled randomized hadamard transform
-
Joel A Tropp. 2011. Improved analysis of the subsampled randomized hadamard transform. Advances in Adaptive Data Analysis, 3(01n02): 115-126.
-
(2011)
Advances in Adaptive Data Analysis
, vol.3
, Issue.1-2
, pp. 115-126
-
-
Tropp, J.A.1
-
44
-
-
58149411184
-
Features of similarity
-
Amos Tversky. 1977. Features of similarity. Psychological Review, 84(4): 327-352.
-
(1977)
Psychological Review
, vol.84
, Issue.4
, pp. 327-352
-
-
Tversky, A.1
-
46
-
-
85125365322
-
Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences
-
Hong Yu and Vasileios Hatzivassiloglou. 2003. Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences. In EMNLP, pages 129-136.
-
(2003)
EMNLP
, pp. 129-136
-
-
Yu, H.1
Hatzivassiloglou, V.2
|