메뉴 건너뛰기




Volumn , Issue , 2016, Pages 2666-2677

SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; SEMANTICS; SENTIMENT ANALYSIS;

EID: 85046586891     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (286)

References (46)
  • 1
  • 2
    • 84990954747 scopus 로고    scopus 로고
    • IFeel: A system that compares and combines sentiment analysis methods
    • Matheus Araújo, Pollyanna Gonçalves, Meeyoung Cha, and Fabríckt Benevenuto. 2014. iFeel: A system that compares and combines sentiment analysis methods. In WWW, pages 75-78.
    • (2014) WWW , pp. 75-78
    • Araújo, M.1    Gonçalves, P.2    Cha, M.3    Benevenuto, F.4
  • 4
    • 84892062680 scopus 로고    scopus 로고
    • A survey of clustering data mining techniques
    • Pavel Berkhin. 2006. A survey of clustering data mining techniques. Grouping multidimensional data, pages 25-71.
    • (2006) Grouping Multidimensional Data , pp. 25-71
    • Berkhin, P.1
  • 5
    • 0035789317 scopus 로고    scopus 로고
    • Random projection in dimensionality reduction: Applications to image and text data
    • Ella Bingham and Heikki Mannila. 2001. Random projection in dimensionality reduction: applications to image and text data. In ACM SIGKDD, pages 245-250.
    • (2001) ACM SIGKDD , pp. 245-250
    • Bingham, E.1    Mannila, H.2
  • 6
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • John Blitzer, Mark Dredze, and Fernando Pereira. 2007. Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, Volume 7, pages 440-447.
    • (2007) ACL , vol.7 , pp. 440-447
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 7
    • 84924582295 scopus 로고    scopus 로고
    • Meta-level sentiment models for big social data analysis
    • Felipe Bravo-Marquez, Marcelo Mendoza, and Barbara Poblete. 2014. Meta-level sentiment models for big social data analysis. Knowledge-Based Systems, 69: 86-99.
    • (2014) Knowledge-Based Systems , vol.69 , pp. 86-99
    • Bravo-Marquez, F.1    Mendoza, M.2    Poblete, B.3
  • 9
    • 84899050913 scopus 로고    scopus 로고
    • Jumping NLP curves: A review of natural language processing research
    • Erik Cambria and Bebo White. 2014. Jumping NLP curves: A review of natural language processing research. IEEE Computational Intelligence Magazine, 9(2): 48-57.
    • (2014) IEEE Computational Intelligence Magazine , vol.9 , Issue.2 , pp. 48-57
    • Cambria, E.1    White, B.2
  • 10
    • 84908152207 scopus 로고    scopus 로고
    • SenticNet 3: A common and common-sense knowledge base for cognition-driven sentiment analysis
    • Quebec City
    • Erik Cambria, Daniel Olsher, and Dheeraj Rajagopal. 2014. SenticNet 3: A common and common-sense knowledge base for cognition-driven sentiment analysis. In AAAI, pages 1515-1521, Quebec City.
    • (2014) AAAI , pp. 1515-1521
    • Cambria, E.1    Olsher, D.2    Rajagopal, D.3
  • 11
    • 84959482068 scopus 로고    scopus 로고
    • AffectiveSpace 2: Enabling affective intuition for concept-level sentiment analysis
    • Austin
    • Erik Cambria, Jie Fu, Federica Bisio, and Soujanya Poria. 2015. AffectiveSpace 2: Enabling affective intuition for concept-level sentiment analysis. In AAAI, pages 508-514, Austin.
    • (2015) AAAI , pp. 508-514
    • Cambria, E.1    Fu, J.2    Bisio, F.3    Poria, S.4
  • 12
    • 84963783209 scopus 로고    scopus 로고
    • Affective computing and sentiment analysis
    • Erik Cambria. 2016. Affective computing and sentiment analysis. IEEE Intelligent Systems, 31(2): 102-107.
    • (2016) IEEE Intelligent Systems , vol.31 , Issue.2 , pp. 102-107
    • Cambria, E.1
  • 13
    • 84932166511 scopus 로고    scopus 로고
    • Deep convolutional neural networks for sentiment analysis of short texts
    • Cicero Nogueira dos Santos and Maira Gatti. 2014. Deep convolutional neural networks for sentiment analysis of short texts. In COLING, pages 69-78.
    • (2014) COLING , pp. 69-78
    • Dos Santos, C.N.1    Gatti, M.2
  • 16
    • 84925900369 scopus 로고
    • Toward an explanatory semantic representation
    • Ray Jackendoff. 1976. Toward an explanatory semantic representation. Linguistic Inquiry, 1(1): 89-150.
    • (1976) Linguistic Inquiry , vol.1 , Issue.1 , pp. 89-150
    • Jackendoff, R.1
  • 18
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • Honglak Lee, Roger Grosse, Rajesh Ranganath, and A. Y. Ng. 2011. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10): 95-103.
    • (2011) Communications of the ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 21
    • 70350645448 scopus 로고    scopus 로고
    • Sentiment analysis of blogs by combining lexical knowledge with text classification
    • Prem Melville, Wojciech Gryc, and Richard D Lawrence. 2009. Sentiment analysis of blogs by combining lexical knowledge with text classification. In ACM SIGKDD, pages 1275-1284.
    • (2009) ACM SIGKDD , pp. 1275-1284
    • Melville, P.1    Gryc, W.2    Lawrence, R.D.3
  • 22
    • 0003015874 scopus 로고
    • A framework for representing knowledge
    • Patrick Winston, editor McGraw-Hill, New York
    • Marvin Minsky. 1975. A framework for representing knowledge. In Patrick Winston, editor, The psychology of computer vision. McGraw-Hill, New York.
    • (1975) The Psychology of Computer Vision
    • Minsky, M.1
  • 23
    • 84859895244 scopus 로고    scopus 로고
    • Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
    • Ann Arbor
    • Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL, pages 115-124, Ann Arbor.
    • (2005) ACL , pp. 115-124
    • Pang, B.1    Lee, L.2
  • 25
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up?: Sentiment classification using machine learning techniques
    • Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up?: Sentiment classification using machine learning techniques. In EMNLP, Volume 10, pages 79-86.
    • (2002) EMNLP , vol.10 , pp. 79-86
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 28
    • 84981713239 scopus 로고    scopus 로고
    • Aspect extraction for opinion mining with a deep convolutional neural network
    • Soujanya Poria, Erik Cambria, and Alexander Gelbukh. 2016a. Aspect extraction for opinion mining with a deep convolutional neural network. Knowledge-Based Systems, 108: 42-49.
    • (2016) Knowledge-Based Systems , vol.108 , pp. 42-49
    • Poria, S.1    Cambria, E.2    Gelbukh, A.3
  • 29
    • 84941006193 scopus 로고    scopus 로고
    • Fusing audio, visual and textual clues for sentiment analysis from multimodal content
    • Soujanya Poria, Erik Cambria, Newton Howard, Guang-Bin Huang, and Amir Hussain. 2016b. Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing, 174: 50-59.
    • (2016) Neurocomputing , vol.174 , pp. 50-59
    • Poria, S.1    Cambria, E.2    Howard, N.3    Huang, G.-B.4    Hussain, A.5
  • 30
    • 85007199314 scopus 로고    scopus 로고
    • Sentic LDA: Improving on LDA with semantic similarity for aspect-based sentiment analysis
    • Soujanya Poria, Iti Chaturvedi, Erik Cambria, and Federica Bisio. 2016c. Sentic LDA: Improving on LDA with semantic similarity for aspect-based sentiment analysis. In IJCNN.
    • (2016) IJCNN
    • Poria, S.1    Chaturvedi, I.2    Cambria, E.3    Bisio, F.4
  • 32
    • 0003088064 scopus 로고
    • The representation of knowledge in memory
    • C Anderson, R Spiro, and W Montague, editors Erlbaum, Hillsdale, NJ
    • David Rumelhart and Andrew Ortony. 1977. The representation of knowledge in memory. In C Anderson, R Spiro, and W Montague, editors, Schooling and the acquisition of knowledge. Erlbaum, Hillsdale, NJ.
    • (1977) Schooling and the Acquisition of Knowledge
    • Rumelhart, D.1    Ortony, A.2
  • 33
    • 35348901208 scopus 로고    scopus 로고
    • Improved approximation algorithms for large matrices via random projections
    • Tamas Sarlos. 2006. Improved approximation algorithms for large matrices via random projections. In FOCS, pages 143-152.
    • (2006) FOCS , pp. 143-152
    • Sarlos, T.1
  • 34
    • 5544324885 scopus 로고
    • Conceptual dependency: A theory of natural language understanding
    • Roger Schänk. 1972. Conceptual dependency: A theory of natural language understanding. Cognitive Psychology, 3: 552-631.
    • (1972) Cognitive Psychology , vol.3 , pp. 552-631
    • Schänk, R.1
  • 37
    • 84870715081 scopus 로고    scopus 로고
    • Semantic compositionality through recursive matrix-vector spaces
    • Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. 2012. Semantic compositionality through recursive matrix-vector spaces. In EMNLP, pages 1201-1211.
    • (2012) EMNLP , pp. 1201-1211
    • Socher, R.1    Huval, B.2    Manning, C.D.3    Ng, A.Y.4
  • 38
    • 84926358845 scopus 로고    scopus 로고
    • Recursive deep models for semantic compositionality over a sentiment treebank
    • Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, pages 1642-1654.
    • (2013) EMNLP , pp. 1642-1654
    • Socher, R.1    Perelygin, A.2    Wu, J.Y.3    Chuang, J.4    Manning, C.D.5    Ng, A.Y.6    Potts, C.7
  • 39
    • 84876932893 scopus 로고    scopus 로고
    • ConceptNet 5: A large semantic network for relational knowledge
    • Eduard Hovy, M Johnson, and G Hirst, editors chapter 6. Springer
    • Robert Speer and Catherine Havasi. 2012. ConceptNet 5: A large semantic network for relational knowledge. In Eduard Hovy, M Johnson, and G Hirst, editors, Theory and Applications of Natural Language Processing, chapter 6. Springer.
    • (2012) Theory and Applications of Natural Language Processing
    • Speer, R.1    Havasi, C.2
  • 40
    • 85029531951 scopus 로고    scopus 로고
    • WordNet-affect: An affective extension of WordNet
    • Lisbon
    • Carlo Strapparava and Alessandro Valitutti. 2004. WordNet-Affect: An affective extension of WordNet. InLREC, pages 1083-1086, Lisbon.
    • (2004) InLREC , pp. 1083-1086
    • Strapparava, C.1    Valitutti, A.2
  • 41
    • 85090890113 scopus 로고    scopus 로고
    • Coooolll: A deep learning system for twitter sentiment classification
    • Duyu Tang, Furu Wei, Bing Qin, Ting Liu, and Ming Zhou. 2014a. Coooolll: A deep learning system for twitter sentiment classification. In SemEval, pages 208-212.
    • (2014) SemEval , pp. 208-212
    • Tang, D.1    Wei, F.2    Qin, B.3    Liu, T.4    Zhou, M.5
  • 42
    • 84906924350 scopus 로고    scopus 로고
    • Learning sentiment-specific word embedding for twitter sentiment classification
    • Duyu Tang, Furu Wei, Nan Yang, Ting Liu, and Bing Qin. 2014b. Learning sentiment-specific word embedding for twitter sentiment classification. In ACL, pages 1555-1565.
    • (2014) ACL , pp. 1555-1565
    • Tang, D.1    Wei, F.2    Yang, N.3    Liu, T.4    Qin, B.5
  • 43
    • 80052645998 scopus 로고    scopus 로고
    • Improved analysis of the subsampled randomized hadamard transform
    • Joel A Tropp. 2011. Improved analysis of the subsampled randomized hadamard transform. Advances in Adaptive Data Analysis, 3(01n02): 115-126.
    • (2011) Advances in Adaptive Data Analysis , vol.3 , Issue.1-2 , pp. 115-126
    • Tropp, J.A.1
  • 44
    • 58149411184 scopus 로고
    • Features of similarity
    • Amos Tversky. 1977. Features of similarity. Psychological Review, 84(4): 327-352.
    • (1977) Psychological Review , vol.84 , Issue.4 , pp. 327-352
    • Tversky, A.1
  • 46
    • 85125365322 scopus 로고    scopus 로고
    • Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences
    • Hong Yu and Vasileios Hatzivassiloglou. 2003. Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences. In EMNLP, pages 129-136.
    • (2003) EMNLP , pp. 129-136
    • Yu, H.1    Hatzivassiloglou, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.