-
1
-
-
84925286056
-
Using “big data” to dissect clinical heterogeneity
-
PID: 25601948
-
Altman RB, Ashley EA. Using “big data” to dissect clinical heterogeneity. Circulation. 2015;131:232–3.
-
(2015)
Circulation
, vol.131
, pp. 232-233
-
-
Altman, R.B.1
Ashley, E.A.2
-
2
-
-
85056212275
-
-
ATKearney. Big data and the creative destruction of today’s business models. 2013. Accessed 12 June 2015
-
ATKearney. Big data and the creative destruction of today’s business models. 2013. http://www.atkearney.com/documents/10192/698536/Big+Data+and+the+Creative+Destruction+of+Todays+Business+Models.pdf/f05aed38-6c26-431d-8500-d75a2c384919. Accessed 12 June 2015.
-
-
-
-
3
-
-
79958704133
-
An introduction to propensity score methods for reducing the effects of confounding in observational studies
-
Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res. 2011;46:399–424.
-
(2011)
Multivar Behav Res
, vol.46
, pp. 399-424
-
-
Austin, P.C.1
-
4
-
-
84924759696
-
Drug treatment patterns in bipolar disorder: analysis of long-term self-reported data
-
PID: 25505672
-
Bauer M, Glenn T, Alda M, Sagduyu K, Marsh W, Grof P, et al. Drug treatment patterns in bipolar disorder: analysis of long-term self-reported data. Int J Bipolar Disord. 2013a;1:5.
-
(2013)
Int J Bipolar Disord
, vol.1
, pp. 5
-
-
Bauer, M.1
Glenn, T.2
Alda, M.3
Sagduyu, K.4
Marsh, W.5
Grof, P.6
-
5
-
-
85053396740
-
Antidepressant dosage taken by patients with bipolar disorder: factors associated with irregularity
-
Bauer R, Glenn T, Alda M, Sagduyu K, Marsh W, Grof P, et al. Antidepressant dosage taken by patients with bipolar disorder: factors associated with irregularity. Int J Bipolar Disord. 2013b;9(1):26.
-
(2013)
Int J Bipolar Disord
, vol.9
, Issue.1
, pp. 26
-
-
Bauer, R.1
Glenn, T.2
Alda, M.3
Sagduyu, K.4
Marsh, W.5
Grof, P.6
-
6
-
-
84944206342
-
Text mining the EMR for modeling and predicting suicidal behavior among US veterans of the 1991 Persian Gulf War
-
HICSS: IEEE
-
Ben-Ari A, Hammond K. Text mining the EMR for modeling and predicting suicidal behavior among US veterans of the 1991 Persian Gulf War. In: 2015 48th Hawaii international conference on system sciences (HICSS), IEEE; 2015. p. 3168–75.
-
(2015)
2015 48th Hawaii international conference on system sciences
, pp. 3168-3175
-
-
Ben-Ari, A.1
Hammond, K.2
-
7
-
-
80054004332
-
Clinical decision making in psychiatry by psychiatrists
-
COI: 1:STN:280:DC%2BC3MbgtFCltA%3D%3D, PID: 21740401
-
Bhugra D, Easter A, Mallaris Y, Gupta S. Clinical decision making in psychiatry by psychiatrists. Acta Psychiatr Scand. 2011;124:403–11.
-
(2011)
Acta Psychiatr Scand
, vol.124
, pp. 403-411
-
-
Bhugra, D.1
Easter, A.2
Mallaris, Y.3
Gupta, S.4
-
8
-
-
84865745578
-
The making of ENCODE: lessons for big-data projects
-
COI: 1:CAS:528:DC%2BC38XhtlGnsL3E, PID: 22955613
-
Birney E. The making of ENCODE: lessons for big-data projects. Nature. 2012;489:49–51.
-
(2012)
Nature
, vol.489
, pp. 49-51
-
-
Birney, E.1
-
9
-
-
84861473762
-
-
Aspen Institute, Communications and Society Program, Washington
-
Bollier D, Firestone CM, Bollier D, Firestone CM. The promise and peril of big data. Washington: Aspen Institute, Communications and Society Program; 2010.
-
(2010)
The promise and peril of big data
-
-
Bollier, D.1
Firestone, C.M.2
Bollier, D.3
Firestone, C.M.4
-
10
-
-
78650116830
-
Patients treated at multiple acute health care facilities: quantifying information fragmentation
-
PID: 21149756
-
Bourgeois FC, Olson KL, Mandl KD. Patients treated at multiple acute health care facilities: quantifying information fragmentation. Arch Intern Med. 2010;170:1989–95.
-
(2010)
Arch Intern Med
, vol.170
, pp. 1989-1995
-
-
Bourgeois, F.C.1
Olson, K.L.2
Mandl, K.D.3
-
11
-
-
84861974217
-
Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon
-
Boyd D, Crawford K. Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf Commun Soc. 2012;15:662–79.
-
(2012)
Inf Commun Soc
, vol.15
, pp. 662-679
-
-
Boyd, D.1
Crawford, K.2
-
13
-
-
84961290792
-
Validation of electronic health record phenotyping of bipolar disorder cases and controls
-
PID: 25827034
-
Castro VM, Minnier J, Murphy SN, Kohane I, Churchill SE, Gainer V, et al. Validation of electronic health record phenotyping of bipolar disorder cases and controls. Am J Psychiatry. 2015;172:363–72.
-
(2015)
Am J Psychiatry
, vol.172
, pp. 363-372
-
-
Castro, V.M.1
Minnier, J.2
Murphy, S.N.3
Kohane, I.4
Churchill, S.E.5
Gainer, V.6
-
14
-
-
85056237575
-
-
CDC. CDC/National Center for Health Statistics. 2014. Accessed 12 June 2015
-
CDC. CDC/National Center for Health Statistics. 2014. http://www.cdc.gov/nchs/fastats/physician-visits.htm. Accessed 12 June 2015.
-
-
-
-
16
-
-
85056237216
-
-
CERN. Animation shows LHC data processing. 2015. Accessed 12 June 2015
-
CERN. Animation shows LHC data processing. 2015. http://home.web.cern.ch/about/updates/2013/04/animation-shows-lhc-data-processing. Accessed 12 June 2015.
-
-
-
-
17
-
-
79951648577
-
Review: electronic health records and the reliability and validity of quality measures: a review of the literature
-
PID: 20150441
-
Chan KS, Fowles JB, Weiner JP. Review: electronic health records and the reliability and validity of quality measures: a review of the literature. Med Care Res Rev. 2010;67:503–27.
-
(2010)
Med Care Res Rev
, vol.67
, pp. 503-527
-
-
Chan, K.S.1
Fowles, J.B.2
Weiner, J.P.3
-
18
-
-
84872199113
-
Redundancy in electronic health record corpora: analysis, impact on text mining performance and mitigation strategies
-
Cohen R, Elhadad M, Elhadad N. Redundancy in electronic health record corpora: analysis, impact on text mining performance and mitigation strategies. BMC Bioinform. 2013;14:10.
-
(2013)
BMC Bioinform
, vol.14
, pp. 10
-
-
Cohen, R.1
Elhadad, M.2
Elhadad, N.3
-
19
-
-
85056241405
-
AHRQ statistical brief #392: the concentration and persistence in the level of health expenditures over time: estimates for the U.S. population
-
Cohen SB. AHRQ statistical brief #392: the concentration and persistence in the level of health expenditures over time: estimates for the U.S. population, 2009–2010. 2012. http://meps.ahrq.gov/data_files/publications/st392/stat392.shtml. Accessed 12 June 2015.
-
(2012)
2009–2010
-
-
Cohen, S.B.1
-
20
-
-
84892826587
-
Assessing racial/ethnic disparities in treatment across episodes of mental health care
-
PID: 23855750
-
Cook BL, Zuvekas SH, Carson N, Wayne GF, Vesper A, McGuire TG. Assessing racial/ethnic disparities in treatment across episodes of mental health care. Health Serv Res. 2014;49:206–29.
-
(2014)
Health Serv Res
, vol.49
, pp. 206-229
-
-
Cook, B.L.1
Zuvekas, S.H.2
Carson, N.3
Wayne, G.F.4
Vesper, A.5
McGuire, T.G.6
-
21
-
-
84874940204
-
Using existing data to address important clinical questions in critical care
-
PID: 23328262
-
Cooke CR, Iwashyna TJ. Using existing data to address important clinical questions in critical care. Crit Care Med. 2013;41:886–96.
-
(2013)
Crit Care Med
, vol.41
, pp. 886-896
-
-
Cooke, C.R.1
Iwashyna, T.J.2
-
23
-
-
66349089005
-
Integrative data analysis: the simultaneous analysis of multiple data sets
-
PID: 19485623
-
Curran PJ, Hussong AM. Integrative data analysis: the simultaneous analysis of multiple data sets. Psychol Methods. 2009;14:81–100.
-
(2009)
Psychol Methods
, vol.14
, pp. 81-100
-
-
Curran, P.J.1
Hussong, A.M.2
-
24
-
-
84889099079
-
Interdependence and predictability of human mobility and social interactions
-
De Domenico M, Lima A, Musolesi M. Interdependence and predictability of human mobility and social interactions. Pervasive Mob Comput. 2013;9:798–807.
-
(2013)
Pervasive Mob Comput
, vol.9
, pp. 798-807
-
-
De Domenico, M.1
Lima, A.2
Musolesi, M.3
-
25
-
-
65449149106
-
Statin adherence and risk of accidents: a cautionary tale
-
COI: 1:CAS:528:DC%2BD1MXksVCrsr4%3D, PID: 19349320
-
Dormuth CR, Patrick AR, Shrank WH, Wright JM, Glynn RJ, Sutherland J, Brookhart MA. Statin adherence and risk of accidents: a cautionary tale. Circulation. 2009;119:2051–7.
-
(2009)
Circulation
, vol.119
, pp. 2051-2057
-
-
Dormuth, C.R.1
Patrick, A.R.2
Shrank, W.H.3
Wright, J.M.4
Glynn, R.J.5
Sutherland, J.6
Brookhart, M.A.7
-
26
-
-
84901799280
-
Statin strikeout
-
COI: 1:CAS:528:DC%2BC2cXhsFemtrjJ, PID: 24835850
-
Drazen JM, Gelijns AC. Statin strikeout. N Engl J Med. 2014;370:2240–1.
-
(2014)
N Engl J Med
, vol.370
, pp. 2240-2241
-
-
Drazen, J.M.1
Gelijns, A.C.2
-
27
-
-
70349313631
-
Inferring friendship network structure by using mobile phone data
-
COI: 1:CAS:528:DC%2BD1MXhtFGgtr7K, PID: 19706491
-
Eagle N, Pentland AS, Lazer D. Inferring friendship network structure by using mobile phone data. Proc Natl Acad Sci USA. 2009;106:15274–8.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 15274-15278
-
-
Eagle, N.1
Pentland, A.S.2
Lazer, D.3
-
28
-
-
80051803315
-
Data, data everywhere
-
Economist. Data, data everywhere. The Economist. 2010. http://www.emc.com/collateral/analyst-reports/ar-the-economist-data-data-everywhere.pdf. Accessed 12 June 2015.
-
(2010)
The Economist
-
-
-
29
-
-
84919389078
-
Challenges of big data analysis
-
PID: 25419469
-
Fan J, Han F, Liu H. Challenges of big data analysis. Natl Sci Rev. 2014;1:293–314.
-
(2014)
Natl Sci Rev
, vol.1
, pp. 293-314
-
-
Fan, J.1
Han, F.2
Liu, H.3
-
30
-
-
85056242737
-
-
FDA. Sentinel initiative. 2014. Accessed 12 June 2015
-
FDA. Sentinel initiative. 2014. http://www.fda.gov/Safety/FDAsSentinelInitiative/ucm2007250.htm. Accessed 12 June 2015.
-
-
-
-
31
-
-
84879121120
-
Exploring the frontier of electronic health record surveillance: the case of postoperative complications
-
PID: 23673394
-
FitzHenry F, Murff HJ, Matheny ME, Gentry N, Fielstein EM, Brown SH, et al. Exploring the frontier of electronic health record surveillance: the case of postoperative complications. Med Care. 2013;51:509–16.
-
(2013)
Med Care
, vol.51
, pp. 509-516
-
-
FitzHenry, F.1
Murff, H.J.2
Matheny, M.E.3
Gentry, N.4
Fielstein, E.M.5
Brown, S.H.6
-
32
-
-
85056212720
-
-
Gallagher P. Welcome and opening remarks NIST joint cloud and big data workshop. 2013. Accessed 12 June 2015
-
Gallagher P. Welcome and opening remarks NIST joint cloud and big data workshop. 2013. http://www.nist.gov/director/speeches/cloud-big-data-011513.cfm. Accessed 12 June 2015.
-
-
-
-
33
-
-
84918569038
-
Dementia risk after traumatic brain injury vs nonbrain trauma: the role of age and severity
-
PID: 25347255
-
Gardner RC, Burke JF, Nettiksimmons J, Kaup A, Barnes DE, Yaffe K. Dementia risk after traumatic brain injury vs nonbrain trauma: the role of age and severity. JAMA Neurol. 2014;71:1490–7.
-
(2014)
JAMA Neurol
, vol.71
, pp. 1490-1497
-
-
Gardner, R.C.1
Burke, J.F.2
Nettiksimmons, J.3
Kaup, A.4
Barnes, D.E.5
Yaffe, K.6
-
34
-
-
84898726853
-
Leveraging a critical care database: selective serotonin reuptake inhibitor use prior to ICU admission is associated with increased hospital mortality
-
PID: 24371841
-
Ghassemi M, Marshall J, Singh N, Stone DJ, Celi LA. Leveraging a critical care database: selective serotonin reuptake inhibitor use prior to ICU admission is associated with increased hospital mortality. Chest. 2014;145:745–52.
-
(2014)
Chest
, vol.145
, pp. 745-752
-
-
Ghassemi, M.1
Marshall, J.2
Singh, N.3
Stone, D.J.4
Celi, L.A.5
-
35
-
-
47249165270
-
Limits of observational data in determining outcomes from cancer therapy
-
PID: 18428196
-
Giordano SH, Kuo YF, Duan Z, Hortobagyi GN, Freeman J, Goodwin JS. Limits of observational data in determining outcomes from cancer therapy. Cancer. 2008;112:2456–66.
-
(2008)
Cancer
, vol.112
, pp. 2456-2466
-
-
Giordano, S.H.1
Kuo, Y.F.2
Duan, Z.3
Hortobagyi, G.N.4
Freeman, J.5
Goodwin, J.S.6
-
37
-
-
84912571809
-
New measures of mental state and behavior based on data collected from sensors, smartphones, and the Internet
-
PID: 25308392
-
Glenn T, Monteith S. New measures of mental state and behavior based on data collected from sensors, smartphones, and the Internet. Curr Psychiatry Rep. 2014;16:523.
-
(2014)
Curr Psychiatry Rep
, vol.16
, pp. 523
-
-
Glenn, T.1
Monteith, S.2
-
38
-
-
84904978487
-
Medicaid prior authorization policies and imprisonment among patients with schizophrenia
-
PID: 25295404
-
Goldman D, Fastenau J, Dirani R, Helland E, Joyce G, Conrad R, et al. Medicaid prior authorization policies and imprisonment among patients with schizophrenia. Am J Manag Care. 2014;20:577–86.
-
(2014)
Am J Manag Care
, vol.20
, pp. 577-586
-
-
Goldman, D.1
Fastenau, J.2
Dirani, R.3
Helland, E.4
Joyce, G.5
Conrad, R.6
-
39
-
-
44849122540
-
Understanding individual human mobility patterns
-
COI: 1:CAS:528:DC%2BD1cXmvVGmsLg%3D, PID: 18528393
-
Gonzalez MC, Hidalgo CA, Barabasi AL. Understanding individual human mobility patterns. Nature. 2008;453:779–82.
-
(2008)
Nature
, vol.453
, pp. 779-782
-
-
Gonzalez, M.C.1
Hidalgo, C.A.2
Barabasi, A.L.3
-
40
-
-
72049102124
-
Risk of autism and increasing maternal and paternal age in a large north American population
-
PID: 19783586
-
Grether JK, Anderson MC, Croen LA, Smith D, Windham GC. Risk of autism and increasing maternal and paternal age in a large north American population. Am J Epidemiol. 2009;170:1118–26.
-
(2009)
Am J Epidemiol
, vol.170
, pp. 1118-1126
-
-
Grether, J.K.1
Anderson, M.C.2
Croen, L.A.3
Smith, D.4
Windham, G.C.5
-
41
-
-
84055188781
-
Three eras of survey research
-
Groves RM. Three eras of survey research. Public Opin Q. 2011;75:861–71.
-
(2011)
Public Opin Q
, vol.75
, pp. 861-871
-
-
Groves, R.M.1
-
42
-
-
84905994891
-
Early experiences with big data at an academic medical center
-
Halamka JD. Early experiences with big data at an academic medical center. Health Aff (Millwood). 2014;33:1132–8.
-
(2014)
Health Aff (Millwood)
, vol.33
, pp. 1132-1138
-
-
Halamka, J.D.1
-
43
-
-
85056242603
-
-
Halamka J. The cost of storing patient records. 2011. Accessed 12 June 2015
-
Halamka J. The cost of storing patient records. 2011. http://geekdoctor.blogspot.com/2011/04/cost-of-storing-patient-records.html. Accessed 12 June 2015.
-
-
-
-
44
-
-
84927139182
-
Is bigger always better? Potential biases of big data derived from social network sites
-
Hargittai E. Is bigger always better? Potential biases of big data derived from social network sites. Ann Am Acad Pol Soc Sci. 2015;659:63–76.
-
(2015)
Ann Am Acad Pol Soc Sci
, vol.659
, pp. 63-76
-
-
Hargittai, E.1
-
45
-
-
84861346585
-
Novel data-mining methodologies for adverse drug event discovery and analysis
-
COI: 1:CAS:528:DC%2BC38XnsFGns7g%3D, PID: 22549283
-
Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91:1010–21.
-
(2012)
Clin Pharmacol Ther
, vol.91
, pp. 1010-1021
-
-
Harpaz, R.1
DuMouchel, W.2
Shah, N.H.3
Madigan, D.4
Ryan, P.5
Friedman, C.6
-
46
-
-
84879885267
-
Caveats for the use of operational electronic health record data in comparative effectiveness research
-
PID: 23774517
-
Hersh WR, Weiner MG, Embi PJ, Logan JR, Payne PR, Bernstam EV, et al. Caveats for the use of operational electronic health record data in comparative effectiveness research. Med Care. 2013;51(8 Suppl 3):S30–7.
-
(2013)
Med Care
, vol.51
, pp. S30-S37
-
-
Hersh, W.R.1
Weiner, M.G.2
Embi, P.J.3
Logan, J.R.4
Payne, P.R.5
Bernstam, E.V.6
-
47
-
-
85056243088
-
-
HHS. More physicians and hospitals are using EHRs than before. 2014. Accessed 12 June 2015
-
HHS. More physicians and hospitals are using EHRs than before. 2014. http://www.hhs.gov/news/press/2014pres/08/20140807a.html. Accessed 12 June 2015.
-
-
-
-
48
-
-
85056212910
-
Looking at data from a different perspective: an interview with Sean Patrick Murphy
-
Hill G. Looking at data from a different perspective: an interview with Sean Patrick Murphy. Big Data Innovation Magazine; 2013.
-
(2013)
Big Data Innovation Magazine
-
-
Hill, G.1
-
49
-
-
84873551510
-
Generalizability of clinical trial results for bipolar disorder to community samples: findings from the National Epidemiologic Survey on Alcohol and Related Conditions
-
PID: 23561233
-
Hoertel N, Le Strat Y, Lavaud P, Dubertret C, Limosin F. Generalizability of clinical trial results for bipolar disorder to community samples: findings from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry. 2013;74:265–70.
-
(2013)
J Clin Psychiatry
, vol.74
, pp. 265-270
-
-
Hoertel, N.1
Le Strat, Y.2
Lavaud, P.3
Dubertret, C.4
Limosin, F.5
-
50
-
-
0031230270
-
Accuracy of data in computer-based patient records
-
COI: 1:STN:280:DyaK2svjvVemsw%3D%3D, PID: 9292840
-
Hogan WR, Wagner MM. Accuracy of data in computer-based patient records. J Am Med Inform Assoc. 1997;4:342–55.
-
(1997)
J Am Med Inform Assoc
, vol.4
, pp. 342-355
-
-
Hogan, W.R.1
Wagner, M.M.2
-
51
-
-
84905101633
-
PTSD diagnostic validity in Veterans Affairs electronic records of Iraq and Afghanistan veterans
-
PID: 24731235
-
Holowka DW, Marx BP, Gates MA, Litman HJ, Ranganathan G, Rosen RC, et al. PTSD diagnostic validity in Veterans Affairs electronic records of Iraq and Afghanistan veterans. J Consult Clin Psychol. 2014;82:569–79.
-
(2014)
J Consult Clin Psychol
, vol.82
, pp. 569-579
-
-
Holowka, D.W.1
Marx, B.P.2
Gates, M.A.3
Litman, H.J.4
Ranganathan, G.5
Rosen, R.C.6
-
52
-
-
84871854103
-
Next-generation phenotyping of electronic health records
-
PID: 22955496
-
Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc. 2013;20:117–21.
-
(2013)
J Am Med Inform Assoc
, vol.20
, pp. 117-121
-
-
Hripcsak, G.1
Albers, D.J.2
-
53
-
-
84862855859
-
Bias associated with mining electronic health records
-
PID: 21647858
-
Hripcsak G, Knirsch C, Zhou L, Wilcox A, Melton G. Bias associated with mining electronic health records. J Biomed Discov Collab. 2011;6:48–52.
-
(2011)
J Biomed Discov Collab
, vol.6
, pp. 48-52
-
-
Hripcsak, G.1
Knirsch, C.2
Zhou, L.3
Wilcox, A.4
Melton, G.5
-
54
-
-
84858343138
-
Comparative safety of antipsychotic medications in nursing home residents
-
PID: 22329464
-
Huybrechts KF, Schneeweiss S, Gerhard T, Olfson M, Avorn J, Levin R, et al. Comparative safety of antipsychotic medications in nursing home residents. J Am Geriatr Soc. 2012;60:420–9.
-
(2012)
J Am Geriatr Soc
, vol.60
, pp. 420-429
-
-
Huybrechts, K.F.1
Schneeweiss, S.2
Gerhard, T.3
Olfson, M.4
Avorn, J.5
Levin, R.6
-
55
-
-
85056229311
-
-
IBM. Big data at the speed of business. 2015. Accessed 12 June 2015
-
IBM. Big data at the speed of business. 2015. http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html. Accessed 12 June 2015.
-
-
-
-
56
-
-
85056246889
-
-
IBM. Data-driven healthcare organizations use big data analytics for big gains. 2013. Accessed 12 June 2015
-
IBM. Data-driven healthcare organizations use big data analytics for big gains. 2013. http://www-03.ibm.com/industries/ca/en/healthcare/documents/Data_driven_healthcare_organizations_use_big_data_analytics_for_big_gains.pdf. Accessed 12 June 2015.
-
-
-
-
57
-
-
85056227154
-
The digital universe
-
IDC. The digital universe. Driving data growth in healthcare. 2014. http://www.emc.com/analyst-report/digital-universe-healthcare-vertical-report-ar.pdf. Accessed 12 June 2015.
-
(2014)
Driving data growth in healthcare
-
-
-
58
-
-
84924232734
-
The problem of reproducibility
-
Ince D. The problem of reproducibility. Chance. 2012; 25.3. http://chance.amstat.org/2012/09/prob-reproducibility/. Accessed 12 June 2015.
-
(2012)
Chance
, vol.25
, pp. 3
-
-
Ince, D.1
-
59
-
-
84875944017
-
Informed consent, big data, and the oxymoron of research that is not research
-
PID: 23514395
-
Ioannidis JP. Informed consent, big data, and the oxymoron of research that is not research. Am J Bioeth. 2013;13:40–2.
-
(2013)
Am J Bioeth
, vol.13
, pp. 40-42
-
-
Ioannidis, J.P.1
-
60
-
-
84875946700
-
Are randomized trials obsolete or more important than ever in the genomic era?
-
PID: 23673134
-
Ioannidis JP, Khoury MJ. Are randomized trials obsolete or more important than ever in the genomic era? Genome Med. 2013;5:32.
-
(2013)
Genome Med
, vol.5
, pp. 32
-
-
Ioannidis, J.P.1
Khoury, M.J.2
-
61
-
-
59149088407
-
Repeatability of published microarray gene expression analyses
-
COI: 1:CAS:528:DC%2BD1MXhtVGitrk%3D, PID: 19174838
-
Ioannidis JP, Allison DB, Ball CA, Coulibaly I, Cui X, Culhane AC, et al. Repeatability of published microarray gene expression analyses. Nat Genet. 2009;41:149–55.
-
(2009)
Nat Genet
, vol.41
, pp. 149-155
-
-
Ioannidis, J.P.1
Allison, D.B.2
Ball, C.A.3
Coulibaly, I.4
Cui, X.5
Culhane, A.C.6
-
62
-
-
33645815277
-
Evidence of bias in estimates of influenza vaccine effectiveness in seniors
-
PID: 16368725
-
Jackson LA, Jackson ML, Nelson JC, Neuzil KM, Weiss NS. Evidence of bias in estimates of influenza vaccine effectiveness in seniors. Int J Epidemiol. 2006;35:337–44.
-
(2006)
Int J Epidemiol
, vol.35
, pp. 337-344
-
-
Jackson, L.A.1
Jackson, M.L.2
Nelson, J.C.3
Neuzil, K.M.4
Weiss, N.S.5
-
63
-
-
69149090568
-
The pathologies of big data
-
Jacobs A. The pathologies of big data. Commun ACM. 2009;52:36–44.
-
(2009)
Commun ACM
, vol.52
, pp. 36-44
-
-
Jacobs, A.1
-
64
-
-
84901792094
-
Big data and its technical challenges
-
Jagadish HV, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel JM, Ramakrishnan R, et al. Big data and its technical challenges. Commun ACM. 2014;57:86–94.
-
(2014)
Commun ACM
, vol.57
, pp. 86-94
-
-
Jagadish, H.V.1
Gehrke, J.2
Labrinidis, A.3
Papakonstantinou, Y.4
Patel, J.M.5
Ramakrishnan, R.6
-
65
-
-
84893194019
-
Tracking suicide risk factors through Twitter in the US
-
PID: 24121153
-
Jashinsky J, Burton SH, Hanson CL, West J, Giraud-Carrier C, Barnes MD, et al. Tracking suicide risk factors through Twitter in the US. Crisis. 2014;35:51–9.
-
(2014)
Crisis
, vol.35
, pp. 51-59
-
-
Jashinsky, J.1
Burton, S.H.2
Hanson, C.L.3
West, J.4
Giraud-Carrier, C.5
Barnes, M.D.6
-
66
-
-
34548721545
-
Information technology in mental health research: impediments and implications in one chronic pain study population
-
Jasser SA, Garvin JH, Wiedemer N, Roche D, Gallagher RM. Information technology in mental health research: impediments and implications in one chronic pain study population. Pain Med. 2007;8(s3):S176–81.
-
(2007)
Pain Med
, vol.8
, Issue.s3
, pp. S176-S181
-
-
Jasser, S.A.1
Garvin, J.H.2
Wiedemer, N.3
Roche, D.4
Gallagher, R.M.5
-
67
-
-
84930045162
-
#Schizophrenia: use and misuse on Twitter
-
PID: 25937459
-
Joseph AJ, Tandon N, Yang LH, Duckworth K, Torous J, Seidman LJ, et al. #Schizophrenia: use and misuse on Twitter. Schizophr Res. 2015;165:111–5.
-
(2015)
Schizophr Res
, vol.165
, pp. 111-115
-
-
Joseph, A.J.1
Tandon, N.2
Yang, L.H.3
Duckworth, K.4
Torous, J.5
Seidman, L.J.6
-
68
-
-
84906222774
-
Big data and large sample size: a cautionary note on the potential for bias
-
PID: 25043853
-
Kaplan RM, Chambers DA, Glasgow RE. Big data and large sample size: a cautionary note on the potential for bias. Clin Transl Sci. 2014;7:342–6.
-
(2014)
Clin Transl Sci
, vol.7
, pp. 342-346
-
-
Kaplan, R.M.1
Chambers, D.A.2
Glasgow, R.E.3
-
69
-
-
85056235346
-
-
Big data vendor revenue and market forecast
-
Kelly J. Big data vendor revenue and market forecast 2013–2017. 2014. http://wikibon.org/wiki/v/Big_Data_Vendor_Revenue_and_Market_Forecast_2013-2017. Accessed 12 June 2015.
-
(2014)
Kelly J
, vol.2013-2017
-
-
-
70
-
-
84920842240
-
Predicting suicides after psychiatric hospitalization in US Army soldiers: the army study to assess risk and resilience in service members (Army STARRS)
-
PID: 25390793
-
Kessler RC, Warner CH, Ivany C, Petukhova MV, Rose S, Bromet EJ, et al. Predicting suicides after psychiatric hospitalization in US Army soldiers: the army study to assess risk and resilience in service members (Army STARRS). JAMA Psychiatry. 2015;72:49–57.
-
(2015)
JAMA Psychiatry
, vol.72
, pp. 49-57
-
-
Kessler, R.C.1
Warner, C.H.2
Ivany, C.3
Petukhova, M.V.4
Rose, S.5
Bromet, E.J.6
-
71
-
-
66749176708
-
Written informed consent and selection bias in observational studies using medical records: systematic review
-
PID: 19282440
-
Kho ME, Duffett M, Willison DJ, Cook DJ, Brouwers MC. Written informed consent and selection bias in observational studies using medical records: systematic review. BMJ. 2009;338:b866.
-
(2009)
BMJ
, vol.338
, pp. b866
-
-
Kho, M.E.1
Duffett, M.2
Willison, D.J.3
Cook, D.J.4
Brouwers, M.C.5
-
72
-
-
70349332836
-
Foundations and frontiers in visual analytics
-
Kielman J, Thomas J, May R. Foundations and frontiers in visual analytics. Inf Vis. 2009;8:239–46.
-
(2009)
Inf Vis
, vol.8
, pp. 239-246
-
-
Kielman, J.1
Thomas, J.2
May, R.3
-
73
-
-
78751658159
-
Passive case-finding for Alzheimer’s disease and dementia in two U.S. communities
-
PID: 21255743
-
Knopman DS, Petersen RC, Rocca WA, Larson EB, Ganguli M. Passive case-finding for Alzheimer’s disease and dementia in two U.S. communities. Alzheimers Dement. 2011;7:53–60.
-
(2011)
Alzheimers Dement
, vol.7
, pp. 53-60
-
-
Knopman, D.S.1
Petersen, R.C.2
Rocca, W.A.3
Larson, E.B.4
Ganguli, M.5
-
74
-
-
84876061994
-
Private traits and attributes are predictable from digital records of human behavior
-
COI: 1:CAS:528:DC%2BC3sXnsFKksLw%3D, PID: 23479631
-
Kosinski M, Stillwell D, Graepel T. Private traits and attributes are predictable from digital records of human behavior. Proc Natl Acad Sci USA. 2013;110:5802–5.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 5802-5805
-
-
Kosinski, M.1
Stillwell, D.2
Graepel, T.3
-
75
-
-
59849099936
-
The changing paradigm of data-intensive computing
-
Kouzes RT, Anderson GA, Elbert ST, Gorton I, Gracio DK. The changing paradigm of data-intensive computing. Computer. 2009;1:26–34.
-
(2009)
Computer
, vol.1
, pp. 26-34
-
-
Kouzes, R.T.1
Anderson, G.A.2
Elbert, S.T.3
Gorton, I.4
Gracio, D.K.5
-
76
-
-
84873816417
-
Finding the needle in the big data systems haystack
-
Kraska T. Finding the needle in the big data systems haystack. IEEE Internet Comput. 2013;17:84–6.
-
(2013)
IEEE Internet Comput
, vol.17
, pp. 84-86
-
-
Kraska, T.1
-
77
-
-
80054844712
-
Racial-ethnic composition of provider practices and disparities in treatment of depression and anxiety, 2003–2007
-
PID: 21885579
-
Lagomasino IT, Stockdale SE, Miranda J. Racial-ethnic composition of provider practices and disparities in treatment of depression and anxiety, 2003–2007. Psychiatr Serv. 2011;62:1019–25.
-
(2011)
Psychiatr Serv
, vol.62
, pp. 1019-1025
-
-
Lagomasino, I.T.1
Stockdale, S.E.2
Miranda, J.3
-
78
-
-
85056218972
-
-
Laney D. 3-D data management: controlling data volume, velocity. Gartner. 2001. Accessed 12 June 2015
-
Laney D. 3-D data management: controlling data volume, velocity. Gartner. 2001. http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf. Accessed 12 June 2015.
-
-
-
-
79
-
-
84886246781
-
The randomized registry trial—the next disruptive technology in clinical research?
-
COI: 1:CAS:528:DC%2BC3sXhslejtr%2FO, PID: 23991657
-
Lauer MS, D’Agostino RB Sr. The randomized registry trial—the next disruptive technology in clinical research? N Engl J Med. 2013;369:1579–81.
-
(2013)
N Engl J Med
, vol.369
, pp. 1579-1581
-
-
Lauer, M.S.1
D’Agostino, R.B.2
-
80
-
-
84896056107
-
Big data. The parable of Google Flu: traps in big data analysis
-
COI: 1:CAS:528:DC%2BC2cXltVylsrs%3D, PID: 24626916
-
Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science. 2014;343:1203–5.
-
(2014)
Science
, vol.343
, pp. 1203-1205
-
-
Lazer, D.1
Kennedy, R.2
King, G.3
Vespignani, A.4
-
81
-
-
18744396959
-
The case for practical clinical trials in psychiatry
-
PID: 15863782
-
March JS, Silva SG, Compton S, Shapiro M, Califf R, Krishnan R. The case for practical clinical trials in psychiatry. Am J Psychiatry. 2005;162:836–46.
-
(2005)
Am J Psychiatry
, vol.162
, pp. 836-846
-
-
March, J.S.1
Silva, S.G.2
Compton, S.3
Shapiro, M.4
Califf, R.5
Krishnan, R.6
-
82
-
-
69949096626
-
Datapoints: psychotropic drug prescriptions by medical specialty
-
PID: 19723729
-
Mark TL, Levit KR, Buck JA. Datapoints: psychotropic drug prescriptions by medical specialty. Psychiatr Serv. 2009;60:1167.
-
(2009)
Psychiatr Serv
, vol.60
, pp. 1167
-
-
Mark, T.L.1
Levit, K.R.2
Buck, J.A.3
-
83
-
-
84905216459
-
Advancing biomarker research: utilizing ‘Big Data’ approaches for the characterization and prevention of bipolar disorder
-
PID: 24330342
-
McIntyre RS, Cha DS, Jerrell JM, Swardfager W, Kim RD, Costa LG, et al. Advancing biomarker research: utilizing ‘Big Data’ approaches for the characterization and prevention of bipolar disorder. Bipolar Disord. 2014;16:531–47.
-
(2014)
Bipolar Disord
, vol.16
, pp. 531-547
-
-
McIntyre, R.S.1
Cha, D.S.2
Jerrell, J.M.3
Swardfager, W.4
Kim, R.D.5
Costa, L.G.6
-
84
-
-
85056212175
-
-
Mislove A, Lehmann S, Ahn YY, Onnela JP, Rosenquist JN. Understanding the demographics of Twitter users, 5th ICWSM; 2011. p. 11.
-
(2011)
Rosenquist JN. Understanding the demographics of Twitter users, 5th ICWSM
, pp. 11
-
-
Mislove, A.1
Lehmann, S.2
Ahn, Y.Y.3
Onnela, J.P.4
-
85
-
-
85056232605
-
-
MIT Sloan and IBM. Analytics: the new path to value. 2010. Accessed 12 June 2015
-
MIT Sloan and IBM. Analytics: the new path to value. 2010. http://sloanreview.mit.edu/reports/analytics-the-new-path-to-value/. Accessed 12 June 2015.
-
-
-
-
86
-
-
44249093716
-
The pitfalls of verifying floating-point computations
-
Monniaux D. The pitfalls of verifying floating-point computations. ACM Trans Progr Lang Syst (TOPLAS). 2008;30:12.
-
(2008)
ACM Trans Progr Lang Syst (TOPLAS)
, vol.30
, pp. 12
-
-
Monniaux, D.1
-
87
-
-
84920133781
-
No! Formal theory, causal inference, and big data are not contradictory trends in political science
-
Monroe BL, Pan J, Roberts ME, Sen M, Sinclair B. No! Formal theory, causal inference, and big data are not contradictory trends in political science. PS Polit Sci Polit. 2015;48:71–4.
-
(2015)
PS Polit Sci Polit
, vol.48
, pp. 71-74
-
-
Monroe, B.L.1
Pan, J.2
Roberts, M.E.3
Sen, M.4
Sinclair, B.5
-
88
-
-
84878841331
-
Pharmacovigilance: an active surveillance system to proactively identify risks for adverse events
-
PID: 23530466
-
Moses C, Celi LA, Marshall J. Pharmacovigilance: an active surveillance system to proactively identify risks for adverse events. Popul Health Manag. 2013;16:147–9.
-
(2013)
Popul Health Manag
, vol.16
, pp. 147-149
-
-
Moses, C.1
Celi, L.A.2
Marshall, J.3
-
89
-
-
85056239587
-
-
Munson L. Facebook: at least 67 million accounts are fake. 2014. Accessed 12 June 2015
-
Munson L. Facebook: at least 67 million accounts are fake. 2014. https://nakedsecurity.sophos.com/2014/02/10/facebook-at-least-67-million-accounts-are-fake/. Accessed 12 June 2015.
-
-
-
-
90
-
-
84875646817
-
The inevitable application of big data to health care
-
COI: 1:CAS:528:DC%2BC3sXlvVSkur4%3D, PID: 23549579
-
Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013;309:1351–2.
-
(2013)
JAMA
, vol.309
, pp. 1351-1352
-
-
Murdoch, T.B.1
Detsky, A.S.2
-
91
-
-
80051989398
-
Systems biology of vaccination for seasonal influenza in humans
-
COI: 1:CAS:528:DC%2BC3MXos1Oms7o%3D, PID: 21743478
-
Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN, et al. Systems biology of vaccination for seasonal influenza in humans. Nat Immunol. 2011;12:786–95.
-
(2011)
Nat Immunol
, vol.12
, pp. 786-795
-
-
Nakaya, H.I.1
Wrammert, J.2
Lee, E.K.3
Racioppi, L.4
Marie-Kunze, S.5
Haining, W.N.6
-
92
-
-
85056215530
-
-
NCI. An assessment of the impact of the NCI cancer biomedical informatics grid (CaBig). 2011. Accessed 12 June 2015
-
NCI. An assessment of the impact of the NCI cancer biomedical informatics grid (CaBig). 2011. http://deainfo.nci.nih.gov/advisory/bsa/bsa0311/caBIGfinalReport.pdf. Accessed 12 June 2015.
-
-
-
-
93
-
-
85056224047
-
-
NSA. Searching the future enterprise. Next Wave. 2014;20:3. https://www.nsa.gov/research/tnw/tnw203/article8.shtml. Accessed 12 June 2015.
-
(2014)
Next Wave
, vol.20
, pp. 3
-
-
-
94
-
-
77649253290
-
Visualizing biological data—now and in the future
-
PID: 20195254
-
O’Donoghue SI, Gavin AC, Gehlenborg N, Goodsell DS, Hériché JK, Nielsen CB, et al. Visualizing biological data—now and in the future. Nat Methods. 2010;7(3 Suppl):S2–4.
-
(2010)
Nat Methods
, vol.7
, pp. S2-S4
-
-
O’Donoghue, S.I.1
Gavin, A.C.2
Gehlenborg, N.3
Goodsell, D.S.4
Hériché, J.K.5
Nielsen, C.B.6
-
95
-
-
26444441479
-
Measuring diagnoses: ICD code accuracy
-
PID: 16178999
-
O’Malley KJ, Cook KF, Price MD, Wildes KR, Hurdle JF, Ashton CM. Measuring diagnoses: ICD code accuracy. Health Serv Res. 2005;40:1620–39.
-
(2005)
Health Serv Res
, vol.40
, pp. 1620-1639
-
-
O’Malley, K.J.1
Cook, K.F.2
Price, M.D.3
Wildes, K.R.4
Hurdle, J.F.5
Ashton, C.M.6
-
96
-
-
84893448944
-
Head injury as risk factor for psychiatric disorders: a nationwide register-based follow-up study of 113,906 persons with head injury
-
PID: 24322397
-
Orlovska S, Pedersen MS, Benros ME, Mortensen PB, Agerbo E, Nordentoft M. Head injury as risk factor for psychiatric disorders: a nationwide register-based follow-up study of 113,906 persons with head injury. Am J Psychiatry. 2014;171:463–9.
-
(2014)
Am J Psychiatry
, vol.171
, pp. 463-469
-
-
Orlovska, S.1
Pedersen, M.S.2
Benros, M.E.3
Mortensen, P.B.4
Agerbo, E.5
Nordentoft, M.6
-
97
-
-
84874452581
-
Sensible use of observational clinical data
-
PID: 21828172
-
Overhage JM, Overhage LM. Sensible use of observational clinical data. Stat Methods Med Res. 2013;22:7–13.
-
(2013)
Stat Methods Med Res
, vol.22
, pp. 7-13
-
-
Overhage, J.M.1
Overhage, L.M.2
-
98
-
-
84920187898
-
Analyzing big data: social choice and measurement
-
Patty JW, Penn EM. Analyzing big data: social choice and measurement. PS Polit Sci Polit. 2015;48:95–101.
-
(2015)
PS Polit Sci Polit
, vol.48
, pp. 95-101
-
-
Patty, J.W.1
Penn, E.M.2
-
99
-
-
82655165845
-
Using electronic medical records to enable large-scale studies in psychiatry: treatment resistant depression as a model
-
COI: 1:STN:280:DC%2BC38%2FivFClsA%3D%3D, PID: 21682950
-
Perlis RH, Iosifescu DV, Castro VM, Murphy SN, Gainer VS, Minnier J. Using electronic medical records to enable large-scale studies in psychiatry: treatment resistant depression as a model. Psychol Med. 2012;42:41–50.
-
(2012)
Psychol Med
, vol.42
, pp. 41-50
-
-
Perlis, R.H.1
Iosifescu, D.V.2
Castro, V.M.3
Murphy, S.N.4
Gainer, V.S.5
Minnier, J.6
-
101
-
-
70349292792
-
The importance of clinical variables in comparative analyses using propensity-score matching: the case of ESA costs for the treatment of chemotherapy-induced anaemia
-
PID: 19757869
-
Polsky D, Eremina D, Hess G, Hill J, Hulnick S, Roumm A, et al. The importance of clinical variables in comparative analyses using propensity-score matching: the case of ESA costs for the treatment of chemotherapy-induced anaemia. Pharmacoeconomics. 2009;27:755–65.
-
(2009)
Pharmacoeconomics
, vol.27
, pp. 755-765
-
-
Polsky, D.1
Eremina, D.2
Hess, G.3
Hill, J.4
Hulnick, S.5
Roumm, A.6
-
102
-
-
84963980054
-
Electronic medical records: fast track to big data in bipolar disorder
-
PID: 25827027
-
Potash JB. Electronic medical records: fast track to big data in bipolar disorder. Am J Psychiatry. 2015;172:310–1.
-
(2015)
Am J Psychiatry
, vol.172
, pp. 310-311
-
-
Potash, J.B.1
-
104
-
-
84903315871
-
Hidden in plain sight: bias towards sick patients when sampling patients with sufficient electronic health record data for research
-
PID: 24916006
-
Rusanov A, Weiskopf NG, Wang S, Weng C. Hidden in plain sight: bias towards sick patients when sampling patients with sufficient electronic health record data for research. BMC Med Inform Decis Mak. 2014;14:51.
-
(2014)
BMC Med Inform Decis Mak
, vol.14
, pp. 51
-
-
Rusanov, A.1
Weiskopf, N.G.2
Wang, S.3
Weng, C.4
-
105
-
-
18044398603
-
A review of uses of health care utilization databases for epidemiologic research on therapeutics
-
PID: 15862718
-
Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol. 2005;58:323–37.
-
(2005)
J Clin Epidemiol
, vol.58
, pp. 323-337
-
-
Schneeweiss, S.1
Avorn, J.2
-
106
-
-
84877906841
-
Improving healthcare with interactive visualization
-
Shneiderman B, Plaisant C, Hesse BW. Improving healthcare with interactive visualization. Computer. 2013;5:58–66.
-
(2013)
Computer
, vol.5
, pp. 58-66
-
-
Shneiderman, B.1
Plaisant, C.2
Hesse, B.W.3
-
107
-
-
70350465146
-
Large datasets in biomedicine: a discussion of salient analytic issues
-
PID: 19717808
-
Sinha A, Hripcsak G, Markatou M. Large datasets in biomedicine: a discussion of salient analytic issues. J Am Med Inform Assoc. 2009;16:759–67.
-
(2009)
J Am Med Inform Assoc
, vol.16
, pp. 759-767
-
-
Sinha, A.1
Hripcsak, G.2
Markatou, M.3
-
108
-
-
85056234502
-
Pew research
-
Smith A. Pew research. 6 new facts about Facebook. 2014. http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/. Accessed 12 June 2015.
-
(2014)
6 new facts about Facebook
-
-
Smith, A.1
-
109
-
-
84904395169
-
Statistics. The future lies in uncertainty
-
Spiegelhalter DJ. Statistics. The future lies in uncertainty. Science. 2014;18(345):264–5.
-
(2014)
Science
, vol.18
, Issue.345
, pp. 264-265
-
-
Spiegelhalter, D.J.1
-
110
-
-
84937437134
-
Small is essential: importance of subpopulation research in cancer control
-
PID: 25905825
-
Srinivasan S, Moser RP, Willis G, Riley W, Alexander M, Berrigan D, et al. Small is essential: importance of subpopulation research in cancer control. Am J Public Health. 2015;105(Suppl 3):S371–3.
-
(2015)
Am J Public Health
, vol.105
, pp. S371-S373
-
-
Srinivasan, S.1
Moser, R.P.2
Willis, G.3
Riley, W.4
Alexander, M.5
Berrigan, D.6
-
111
-
-
84875540793
-
Crossing the omic chasm: a time for omic ancillary systems
-
COI: 1:CAS:528:DC%2BC3sXlvFSgs70%3D, PID: 23494000
-
Starren J, Williams MS, Bottinger EP. Crossing the omic chasm: a time for omic ancillary systems. JAMA. 2013;309:1237–8.
-
(2013)
JAMA
, vol.309
, pp. 1237-1238
-
-
Starren, J.1
Williams, M.S.2
Bottinger, E.P.3
-
112
-
-
84899463536
-
The role of big data and advanced analytics in drug discovery, development, and commercialization
-
PID: 24642713
-
Szlezák N, Evers M, Wang J, Pérez L. The role of big data and advanced analytics in drug discovery, development, and commercialization. Clin Pharmacol Ther. 2014;95:492–5.
-
(2014)
Clin Pharmacol Ther
, vol.95
, pp. 492-495
-
-
Szlezák, N.1
Evers, M.2
Wang, J.3
Pérez, L.4
-
113
-
-
77957806232
-
Matching methods for causal inference: a review and a look forward
-
PID: 20871802
-
Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Sci. 2010;25:1–21.
-
(2010)
Stat Sci
, vol.25
, pp. 1-21
-
-
Stuart, E.A.1
-
114
-
-
84920145960
-
Can big data solve the fundamental problem of causal inference?
-
Titiunik R. Can big data solve the fundamental problem of causal inference? PS Polit Sci Polit. 2015;48(1):75–9.
-
(2015)
PS Polit Sci Polit
, vol.48
, Issue.1
, pp. 75-79
-
-
Titiunik, R.1
-
115
-
-
79960704238
-
Confounding adjustment via a semi-automated high-dimensional propensity score algorithm: an application to electronic medical records
-
PID: 21717528
-
Toh S, García Rodríguez LA, Hernán MA. Confounding adjustment via a semi-automated high-dimensional propensity score algorithm: an application to electronic medical records. Pharmacoepidemiol Drug Saf. 2011;20:849–57.
-
(2011)
Pharmacoepidemiol Drug Saf
, vol.20
, pp. 849-857
-
-
Toh, S.1
García Rodríguez, L.A.2
Hernán, M.A.3
-
116
-
-
85056224295
-
The collected works of John W. Tukey: graphics 1965–1985, vol V
-
Belmont, Chapman and Hall
-
Tukey JW. The collected works of John W. Tukey: graphics 1965–1985, vol V. In: Cleveland WS, editor. Statistics/probability series. Belmont: Chapman and Hall; 1988. p. 421.
-
(1988)
Statistics/probability series
, pp. 421
-
-
Tukey, J.W.1
Cleveland, W.S.2
-
117
-
-
85056212234
-
-
VA. Million veteran program. 2015. Accessed 12 June 2015
-
VA. Million veteran program. 2015. http://www.research.va.gov/mvp/. Accessed 12 June 2015.
-
-
-
-
118
-
-
84866153752
-
Enhancing electronic health record measurement of depression severity and suicide ideation: a distributed ambulatory research in therapeutics network (DARTNet) study
-
PID: 22956694
-
Valuck RJ, Anderson HO, Libby AM, Brandt E, Bryan C, Allen RR, et al. Enhancing electronic health record measurement of depression severity and suicide ideation: a distributed ambulatory research in therapeutics network (DARTNet) study. J Am Board Fam Med. 2012;25:582–93.
-
(2012)
J Am Board Fam Med
, vol.25
, pp. 582-593
-
-
Valuck, R.J.1
Anderson, H.O.2
Libby, A.M.3
Brandt, E.4
Bryan, C.5
Allen, R.R.6
-
119
-
-
84899144125
-
Human neuroimaging as a “Big Data” science
-
PID: 24113873
-
Van Horn JD, Toga AW. Human neuroimaging as a “Big Data” science. Brain Imaging Behav. 2014;8:323–31.
-
(2014)
Brain Imaging Behav
, vol.8
, pp. 323-331
-
-
Van Horn, J.D.1
Toga, A.W.2
-
120
-
-
84897791696
-
Beyond big data
-
Varian HR. Beyond big data. Bus Econ. 2014;49:27–31.
-
(2014)
Bus Econ
, vol.49
, pp. 27-31
-
-
Varian, H.R.1
-
121
-
-
85097571242
-
Big data and clinicians: a review on the state of the science
-
PID: 25600256
-
Wang W, Krishnan E. Big data and clinicians: a review on the state of the science. JMIR Med Inform. 2014;2:e1.
-
(2014)
JMIR Med Inform
, vol.2
, pp. e1
-
-
Wang, W.1
Krishnan, E.2
-
123
-
-
84863527527
-
-
David Weinberger on science and big data, The Atlantic
-
Weinberger D. To know, but not understand: David Weinberger on science and big data. The Atlantic. 2012. http://www.theatlantic.com/technology/archive/2012/01/to-know-but-not-understand-david-weinberger-on-science-and-big-data/250820/. Accessed 12 June 2015.
-
(2012)
To know, but not understand
-
-
Weinberger, D.1
-
124
-
-
84856414697
-
The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception
-
PID: 22047634
-
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement. 2012;8(1 Suppl):S1–68.
-
(2012)
Alzheimers Dement
, vol.8
, pp. S1-S68
-
-
Weiner, M.W.1
Veitch, D.P.2
Aisen, P.S.3
Beckett, L.A.4
Cairns, N.J.5
Green, R.C.6
-
125
-
-
84958599888
-
Strategies for handling missing data in electronic health record derived data
-
Wells BJ, Chagin KM, Nowacki AS, Kattan MW. Strategies for handling missing data in electronic health record derived data. EGEMS (Wash DC). 2013;1:1035.
-
(2013)
EGEMS (Wash DC)
, vol.1
, pp. 1035
-
-
Wells, B.J.1
Chagin, K.M.2
Nowacki, A.S.3
Kattan, M.W.4
-
126
-
-
84888856412
-
Prescribing of psychotropic medications to patients without a psychiatric diagnosis
-
PID: 23999894
-
Wiechers IR, Leslie DL, Rosenheck RA. Prescribing of psychotropic medications to patients without a psychiatric diagnosis. Psychiatr Serv. 2013;64:1243–8.
-
(2013)
Psychiatr Serv
, vol.64
, pp. 1243-1248
-
-
Wiechers, I.R.1
Leslie, D.L.2
Rosenheck, R.A.3
-
127
-
-
84922482136
-
Digital pathology: get on board—the train is leaving the station
-
PID: 25236488
-
Wilbur DC. Digital pathology: get on board—the train is leaving the station. Cancer Cytopathol. 2014;122:791–5.
-
(2014)
Cancer Cytopathol
, vol.122
, pp. 791-795
-
-
Wilbur, D.C.1
-
128
-
-
84887286037
-
Making sense of big data
-
COI: 1:CAS:528:DC%2BC3sXhvVSmurzI, PID: 24145435
-
Wolfe PJ. Making sense of big data. Proc Natl Acad Sci USA. 2013;110:18031–2.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 18031-18032
-
-
Wolfe, P.J.1
-
129
-
-
84865212981
-
The top 10 challenges in extreme-scale visual analytics
-
PID: 24489426
-
Wong PC, Shen HW, Johnson CR, Chen C, Ross RB. The top 10 challenges in extreme-scale visual analytics. IEEE Comput Graph Appl. 2012;32:63.
-
(2012)
IEEE Comput Graph Appl
, vol.32
, pp. 63
-
-
Wong, P.C.1
Shen, H.W.2
Johnson, C.R.3
Chen, C.4
Ross, R.B.5
-
130
-
-
84874429030
-
Using electronic health records data to assess comorbidities of substance use and psychiatric diagnoses and treatment settings among adults
-
PID: 23337131
-
Wu LT, Gersing KR, Swartz MS, Burchett B, Li TK, Blazer DG. Using electronic health records data to assess comorbidities of substance use and psychiatric diagnoses and treatment settings among adults. J Psychiatr Res. 2013;47:555–63.
-
(2013)
J Psychiatr Res
, vol.47
, pp. 555-563
-
-
Wu, L.T.1
Gersing, K.R.2
Swartz, M.S.3
Burchett, B.4
Li, T.K.5
Blazer, D.G.6
-
131
-
-
33645814035
-
Effective recruitment and retention of minority research participants
-
PID: 16533107
-
Yancey AK, Ortega AN, Kumanyika SK. Effective recruitment and retention of minority research participants. Annu Rev Public Health. 2006;27:1–28.
-
(2006)
Annu Rev Public Health
, vol.27
, pp. 1-28
-
-
Yancey, A.K.1
Ortega, A.N.2
Kumanyika, S.K.3
-
132
-
-
84921802546
-
Computer-based personality judgments are more accurate than those made by humans
-
COI: 1:CAS:528:DC%2BC2MXmtFGhsA%3D%3D, PID: 25583507
-
Youyou W, Kosinski M, Stillwell D. Computer-based personality judgments are more accurate than those made by humans. Proc Natl Acad Sci USA. 2015;112:1036–40.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 1036-1040
-
-
Youyou, W.1
Kosinski, M.2
Stillwell, D.3
-
133
-
-
11244278062
-
Challenges to evidence-based medicine: a comparison of patients and treatments in randomized controlled trials with patients and treatments in a practice research network
-
PID: 15624072
-
Zarin DA, Young JL, West JC. Challenges to evidence-based medicine: a comparison of patients and treatments in randomized controlled trials with patients and treatments in a practice research network. Soc Psychiatry Psychiatr Epidemiol. 2005;40:27–35.
-
(2005)
Soc Psychiatry Psychiatr Epidemiol
, vol.40
, pp. 27-35
-
-
Zarin, D.A.1
Young, J.L.2
West, J.C.3
|